Abstract We employ individual-based Monte Carlo computer simulations of a stochastic SEIR model variant on a two-dimensional Newman–Watts small-world network to investigate the control of epidemic outbreaks through periodic testing and isolation of infectious individuals, and subsequent quarantine of their immediate contacts. Using disease parameters informed by the COVID-19 pandemic, we investigate the effects of various crucial mitigation features on the epidemic spreading: fraction of the infectious population that is identifiable through the tests; testing frequency; time delay between testing and isolation of positively tested individuals; and the further time delay until quarantining their contacts as well as the quarantine duration. We thus determine the required ranges for these intervention parameters to yield effective control of the disease through both considerable delaying the epidemic peak and massively reducing the total number of sustained infections. 
                        more » 
                        « less   
                    
                            
                            Activity-driven network modeling and control of the spread of two concurrent epidemic strains
                        
                    
    
            Abstract The emergency generated by the current COVID-19 pandemic has claimed millions of lives worldwide. There have been multiple waves across the globe that emerged as a result of new variants, due to arising from unavoidable mutations. The existing network toolbox to study epidemic spreading cannot be readily adapted to the study of multiple, coexisting strains. In this context, particularly lacking are models that could elucidate re-infection with the same strain or a different strain—phenomena that we are seeing experiencing more and more with COVID-19. Here, we establish a novel mathematical model to study the simultaneous spreading of two strains over a class of temporal networks. We build on the classical susceptible–exposed–infectious–removed model, by incorporating additional states that account for infections and re-infections with multiple strains. The temporal network is based on the activity-driven network paradigm, which has emerged as a model of choice to study dynamic processes that unfold at a time scale comparable to the network evolution. We draw analytical insight from the dynamics of the stochastic network systems through a mean-field approach, which allows for characterizing the onset of different behavioral phenotypes (non-epidemic, epidemic, and endemic). To demonstrate the practical use of the model, we examine an intermittent stay-at-home containment strategy, in which a fraction of the population is randomly required to isolate for a fixed period of time. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10414312
- Date Published:
- Journal Name:
- Applied Network Science
- Volume:
- 7
- Issue:
- 1
- ISSN:
- 2364-8228
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The rapid rollout of the COVID-19 vaccine raises the question of whether and when the ongoing pandemic could be eliminated with vaccination and non-pharmaceutical interventions (NPIs). Despite advances in the impact of NPIs and the conceptual belief that NPIs and vaccination control COVID-19 infections, we lack evidence to employ control theory in real-world social human dynamics in the context of disease spreading. We bridge the gap by developing a new analytical framework that treats COVID-19 as a feedback control system with the NPIs and vaccination as the controllers and a computational model that maps human social behaviors into input signals. This approach enables us to effectively predict the epidemic spreading in 381 Metropolitan statistical areas (MSAs) in the US by learning our model parameters utilizing the time series NPIs (i.e., the stay-at-home order, face-mask wearing, and testing) data. This model allows us to optimally identify three NPIs to predict infections accurately in 381 MSAs and avoid over-fitting. Our numerical results demonstrate our approach’s excellent predictive power with R 2 > 0.9 for all the MSAs regardless of their sizes, locations, and demographic status. Our methodology allows us to estimate the needed vaccine coverage and NPIs for achieving R e to a manageable level and how the variants of concern diminish the likelihood for disease elimination at each location. Our analytical results provide insights into the debates surrounding the elimination of COVID-19. NPIs, if tailored to the MSAs, can drive the pandemic to an easily containable level and suppress future recurrences of epidemic cycles.more » « less
- 
            The COVID-19 pandemic represents the most significant public health disaster since the 1918 influenza pandemic. During pandemics such as COVID-19, timely and reliable spatiotemporal forecasting of epidemic dynamics is crucial. Deep learning-based time series models for forecasting have recently gained popularity and have been successfully used for epidemic forecasting. Here we focus on the design and analysis of deep learning-based models for COVID-19 forecasting. We implement multiple recurrent neural network-based deep learning models and combine them using the stacking ensemble technique. In order to incorporate the effects of multiple factors in COVID-19 spread, we consider multiple sources such as COVID-19 confirmed and death case count data and testing data for better predictions. To overcome the sparsity of training data and to address the dynamic correlation of the disease, we propose clustering-based training for high-resolution forecasting. The methods help us to identify the similar trends of certain groups of regions due to various spatio-temporal effects. We examine the proposed method for forecasting weekly COVID-19 new confirmed cases at county-, state-, and country-level. A comprehensive comparison between different time series models in COVID-19 context is conducted and analyzed. The results show that simple deep learning models can achieve comparable or better performance when compared with more complicated models. We are currently integrating our methods as a part of our weekly forecasts that we provide state and federal authorities.more » « less
- 
            The large population movement during the Spring Festival travel in China can considerably accelerate the spread of epidemics, especially after the relaxation of strict control measures against COVID-19. This study aims to assess the impact of population migration in Spring Festival holiday on epidemic spread under different scenarios. Using inter-city population movement data, we construct the population flow network during the non-holiday time as well as the Spring Festival holiday. We build a large-scale metapopulation model to simulate the epidemic spread among 371 Chinese cities. We analyze the impact of Spring Festival travel on the peak timing and peak magnitude nationally and in each city. Assuming an R0 (basic reproduction number) of 15 and the initial conditions as the reported COVID-19 infections on 17 December 2022, model simulations indicate that the Spring Festival travel can substantially increase the national peak magnitude of infection. The infection peaks arrive at most cities 1–4 days earlier as compared to those of the non-holiday time. While peak infections in certain large cities, such as Beijing and Shanghai, are decreased due to the massive migration of people to smaller cities during the pre-Spring Festival period, peak infections increase significantly in small- or medium-sized cities. For a less transmissible disease (R0 = 5), infection peaks in large cities are delayed until after the Spring Festival. Small- or medium-sized cities may experience a larger infection due to the large-scale population migration from metropolitan areas. The increased disease burden may impose considerable strain on the healthcare systems in these resource-limited areas. For a less transmissible disease, particular attention needs to be paid to outbreaks in large cities when people resume work after holidays.more » « less
- 
            Borri, Alessandro (Ed.)Ever since the outbreak of the COVID-19 epidemic, various public health control strategies have been proposed and tested against the coronavirus SARS-CoV-2. We study three specific COVID-19 epidemic control models: the susceptible, exposed, infectious, recovered (SEIR) model with vaccination control; the SEIR model with shield immunity control; and the susceptible, un-quarantined infected, quarantined infected, confirmed infected (SUQC) model with quarantine control. We express the control requirement in metric temporal logic (MTL) formulas (a type of formal specification languages) which can specify the expected control outcomes such as “ the deaths from the infection should never exceed one thousand per day within the next three months ” or “ the population immune from the disease should eventually exceed 200 thousand within the next 100 to 120 days ”. We then develop methods for synthesizing control strategies with MTL specifications. To the best of our knowledge, this is the first paper to systematically synthesize control strategies based on the COVID-19 epidemic models with formal specifications. We provide simulation results in three different case studies: vaccination control for the COVID-19 epidemic with model parameters estimated from data in Lombardy, Italy; shield immunity control for the COVID-19 epidemic with model parameters estimated from data in Lombardy, Italy; and quarantine control for the COVID-19 epidemic with model parameters estimated from data in Wuhan, China. The results show that the proposed synthesis approach can generate control inputs such that the time-varying numbers of individuals in each category (e.g., infectious, immune) satisfy the MTL specifications. The results also show that early intervention is essential in mitigating the spread of COVID-19, and more control effort is needed for more stringent MTL specifications. For example, based on the model in Lombardy, Italy, achieving less than 100 deaths per day and 10000 total deaths within 100 days requires 441.7% more vaccination control effort than achieving less than 1000 deaths per day and 50000 total deaths within 100 days.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    