skip to main content


Title: Behavior of Greigite‐Bearing Marine Sediments During AF and Thermal Demagnetization and Its Significance
Abstract

Gyro‐remanent magnetization (GRM) is a frequently occurring yet unwanted remanence contamination for certain samples during alternating field (AF) demagnetization of the natural remanent magnetization. The origin and detailed properties of GRM have not yet been fully understood. In this study, systematic rock magnetic analyses were conducted on marine greigite‐bearing samples of Hole U1433A drilled by the IODP Expedition 349 from the South China Sea. Results show that GRM is mostly acquired above ~55 mT AF demagnetization and can be effectively removed by heating to ~400°C during thermal demagnetization but a secondary tail could remain until ~585°C. In addition, no apparent GRM was observed during the AF demagnetization for the 400°C thermally treated samples. These results strongly suggest that GRM is dominantly carried by single domain (SD) greigite but with minor contributions from SD magnetite. Thus, thermal treatment alone or the hybrid demagnetization (i.e., thermal demagnetization at ~400°C first then systematical AF demagnetization) can efficiently avoid the GRM acquisition and be beneficial for relative paleointensity estimation for greigite‐bearing samples. Besides, GRM carried by greigite has a low thermal stability. Our results also show AF demagnetization spectra of anhysteretic remanent magnetization (ARM) could be strongly distorted by GRM effects due to both have a preference of SD particles. Thus, the median destructive field of ARM is improper to be used as a coercivity proxy for greigite‐bearing samples. Instead, the biplot analysis of AF demagnetization of natural remanent magnetization and ARM can be used to evaluate the relative content of greigite.

 
more » « less
NSF-PAR ID:
10359761
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
21
Issue:
7
ISSN:
1525-2027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY Understanding the temporal changes of the Earth’s magnetic field intensity is one of the main goals of modern palaeomagnetism. For most palaeointensity methods to yield reliable results, the magnetic minerals must obey a set of rules. One of these rules is the additivity of partial thermal (TRM) or anhysteretic remanent magnetizations (ARM). Additivity was previously shown for partial TRM in single-domain particles and more generally for ARMs. Additivity between these two low-field remanences, however, has not been investigated, yet. This paper presents a series of rock magnetic experiments on natural low Ti titanomagnetites (Curie temperature between 534 °C and 561 °C) examining the effects of high temperatures on alternating field (AF) demagnetization and acquisition of an ARM. One of our sample sets comes from a borehole drilled through the impact melt sheet of the Manicouagan crater (Canada), the other from the Rocche Rosse lava flow on the island of Lipari (Italy). Hysteresis parameters indicate the magnetic carriers in the pseudo-single-domain range showing no evidence for oxidation. Thermal demagnetization at 300 °C and 500 °C before AF demagnetization shifts the coercivity spectra towards higher fields. AF demagnetization experiments at 500 °C show a significant (by a factor between 1.4 and >7.6) reduction in median destructive field and a shift towards lower coercivities. A linear relationship was found between the peak magnetic field required to demagnetize a fraction of a full TRM of a sample at a specific temperature and the one necessary to demagnetize the same fraction at room temperature after heating to that temperature. The comparison of full ARM and partial TRM at successively higher temperatures with a hybrid hTARM reveals that combined additivity between the two kinds of remanences is fulfilled. These results open the possibility to demagnetize highly coercive minerals, such as hematite and goethite, which is often not achievable at elevated temperatures. Furthermore, the additivity of TRM and ARM remanences may be used to develop novel hybrid TRM/ARM palaeointensity methods for samples, where heating is problematic (e.g. in meteorites). 
    more » « less
  2. SUMMARY

    The Holy Cross Mountains (HCM) in Poland, is an isolated natural outcrop of Palaeozoic rocks located within the Trans-European Suture Zone, a tectonic collage of continental terranes adjacent to the Tornquist margin of the Baltica. This uniqueness made the HCM a target for palaeogeographic research. Based on the facies differences, the HCM had been divided into two major units, the southern (the Kielce Unit) and northern (the Łysogóry Unit) part (SHCM and NHCM, respectively). Their position in relation to each other and the Baltica continent during Silurian times is still a matter of discussion, whether both parts of the HCM were separated terranes located along the Baltica margin or they shared in common palaeogeographic history. Here, we present the results of comprehensive rock magnetic measurements applied as a tool to interpret palaeoenvironmental conditions during deposition and burial and therefore allow discussion about the terranes’ relative position. To recognize the magnetic mineral composition and texture of studied Silurian graptolitic shales several rock magnetic measurements were conducted including low-temperature Saturated Isothermal Remanent Magnetization, thermal demagnetization of three-component IRM and hysteresis measurements, as well as anisotropy of magnetic susceptibility (AMS). The sampled rocks come from both units of the HCM. In all analysed samples we found single domain (SD) stoichiometric magnetite of mostly diagenetic (i.e. post-depositional) origin and goethite resulting likely from weathering. In turn, detrital magnetite, even if observed in previously investigated Silurian rocks from the Baltica margin, was not identified in this study, what we attribute to dissolution during diagenesis in the deep-water environment. Solely in the NHCM, SD hematite and maghemite grains were observed, which we interpret as detrital in origin. These grains have been preserved in the suboxic environment of the NHCM sub-basin bottom waters due to their resistance to dissolution in marine waters. Considering the deposition conditions (oxygenation of the near-bottom zone) rather similar for both HCM parts, we associate the presence of aeolian hematite grains solely in the NHCM rocks with a more proximal position of the NHCM than the SHCM in relation to the Baltica continent during late Llandovery (Silurian). This conclusion agrees with some existing palaeogeographic models. In addition to petromagnetic studies focused on the analysis of ferromagnets, AMS measurements were also carried out. The results indicate that the magnetic susceptibility is mainly governed by paramagnetic minerals, mostly phyllosilicates with small ferromagnetic contributions. Oblate AMS ellipsoid and distinct bedding parallel foliation indicate prevailing sedimentary-compactional alignment. Observed magnetic lineation of tectonic origin resulting from weak strain is related presumably to Variscian deformations.

     
    more » « less
  3. null (Ed.)
    SUMMARY Upon cooling, most rocks acquire a thermoremanent magnetization (TRM); the cooling rate at which this happens not only affects palaeointensity estimates, but also their unblocking temperatures in stepwise thermal demagnetization experiments, which is important, for example, to estimate volcanic emplacement temperatures. Traditional single-domain (SD) theory of magnetic remanence relates relaxation times to blocking temperatures— the blocking temperature is the temperature at which the relaxation time becomes shorter than the experimental timescale—and therefore strictly only applies to remanence acquisition mechanisms at constant temperatures (i.e. viscous remanent magnetizations, VRMs). A theoretical framework to relate (constant) blocking temperatures to (time-varying) cooling rates exists, but this theory has very limited experimental verification—partly due to the difficulty of accurately knowing the cooling rates of geological materials. Here we present an experimental test of this ‘cooling rate effect on blocking temperatures’ through a series of demagnetization experiments of laboratory-induced TRMs with controlled cooling rates. The tested cooling rates span about 1 order of magnitude and are made possible through (1) extremely accurate demagnetization experiments using a low-temperature magnetic properties measurement system (MPMS) and (2) the use of a ‘1-step-only’ stepwise thermal demagnetization protocol where the relaxation process is measured over time. In this way the relaxation time corresponding to the blocking temperature is measured, which can be done to much higher accuracy than measuring the blocking temperature directly as done in traditional stepwise thermal demagnetization experiments. Our experiments confirm that the cooling rate relationship holds to high accuracy for ideal magnetic recorders, as shown for a synthetic weakly interacting SD magnetoferritin sample. A SD-dominated low-Ti titanomagnetite Tiva Canyon Tuff sample, however, showed that natural samples are unlikely to be sufficiently ‘ideal’ to meet the theoretical predictions to high accuracy—the experimental data agrees only approximately with the theoretical predictions, which may potentially affect blocking temperature estimates in stepwise thermal demagnetization experiments. Moreover, we find a strongly enhanced cooling rate effect on palaeointensities for even marginally non-ideal samples (up to 43 per cent increase in pTRM for a halving of the cooling rate). 
    more » « less
  4. null (Ed.)
    The paleomagnetic shipboard data of International Ocean Discovery Program Site U1475, with a record reaching back to approximately 7 Ma, allowed for the identification of major magnetic polarity chrons and subchrons back to ~3.5 Ma. However, the natural remanent magnetization (NRM) was very weak, and transitional intervals with unclear polarity were as thick as several meters. The midpoints of these transitional intervals were reported in the shipboard results without decimal places because of the poor data quality. To evaluate and possibly refine the shipboard magnetostratigraphy, subsampling was performed across the polarity transitions. Detailed alternating field (AF) demagnetization experiments were conducted on these discrete samples and were complemented by anhysteretic remanent magnetization acquisition measurements and subsequent demagnetization. AF demagnetization data of NRM were analyzed using anchored principal component analysis (PCA) to obtain the characteristic remanent magnetization. These PCA results generally confirm the smoothed signal across polarity transitions at Site U1475. However, the midpoint depths of the top of the Keana Subchron, the Gauss-Matuyama and Matuyama-Brunhes boundaries, and the base of the Olduvai Subchron were adjusted. 
    more » « less
  5. Abstract

    The martian dynamo’s strength and duration are essential for understanding Mars' habitability and deep interior dynamics. Although most northern volcanic terranes were likely emplaced after the martian dynamo ceased, recent data from the InSight mission show stronger than predicted crustal fields. Studying young volcanic martian meteorites offers a precise, complementary method to characterize the strength of the martian crustal field and examine its implications for past dynamo activity. We present the first rock and paleomagnetic study of nine mutually oriented samples from the martian Nakhlite meteorite Miller Range (MIL) 03346, which is well‐suited for paleomagnetic analysis due to its well‐known age (1,368 ± 83 Ma) and lack of significant aqueous, thermal, and shock overprinting. Rock magnetic analysis, including quantum diamond microscope imaging, showed that the natural remanent magnetization (NRM) is carried by Ti‐magnetite crystals containing µm‐scale ilmenite exsolution lamellae, which can accurately record ancient magnetic fields. Demagnetization of the NRM revealed a high coercivity magnetization interpreted to date from the age of eruption based on its intensity, unidirectionality, and a passing fusion crust baked contact test. Paleointensities of four samples reveal a 5.1 ± 1.5 µT paleofield, representing the most reliable martian paleointensity estimates to‐date and stronger than the 2 µT surface fields measured by InSight. Modeling shows that the observed fields can be explained by an older subsurface magnetized layer without a late, active dynamo and support a deeply buried, highly magnetized crust in the northern hemisphere of Mars. These results provide corroborating evidence for strong, small‐scale crustal fields on Mars.

     
    more » « less