skip to main content


Title: Paleointensity and Rock Magnetism of Martian Nakhlite Meteorite Miller Range 03346: Evidence for Intense Small‐Scale Crustal Magnetization on Mars
Abstract

The martian dynamo’s strength and duration are essential for understanding Mars' habitability and deep interior dynamics. Although most northern volcanic terranes were likely emplaced after the martian dynamo ceased, recent data from the InSight mission show stronger than predicted crustal fields. Studying young volcanic martian meteorites offers a precise, complementary method to characterize the strength of the martian crustal field and examine its implications for past dynamo activity. We present the first rock and paleomagnetic study of nine mutually oriented samples from the martian Nakhlite meteorite Miller Range (MIL) 03346, which is well‐suited for paleomagnetic analysis due to its well‐known age (1,368 ± 83 Ma) and lack of significant aqueous, thermal, and shock overprinting. Rock magnetic analysis, including quantum diamond microscope imaging, showed that the natural remanent magnetization (NRM) is carried by Ti‐magnetite crystals containing µm‐scale ilmenite exsolution lamellae, which can accurately record ancient magnetic fields. Demagnetization of the NRM revealed a high coercivity magnetization interpreted to date from the age of eruption based on its intensity, unidirectionality, and a passing fusion crust baked contact test. Paleointensities of four samples reveal a 5.1 ± 1.5 µT paleofield, representing the most reliable martian paleointensity estimates to‐date and stronger than the 2 µT surface fields measured by InSight. Modeling shows that the observed fields can be explained by an older subsurface magnetized layer without a late, active dynamo and support a deeply buried, highly magnetized crust in the northern hemisphere of Mars. These results provide corroborating evidence for strong, small‐scale crustal fields on Mars.

 
more » « less
NSF-PAR ID:
10446161
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Planets
Volume:
126
Issue:
5
ISSN:
2169-9097
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY

    Quaternary lavas of the Stardalur Caldera, 20 km northeast of Reykjavik, Iceland, create a 27 300 nT magnetic anomaly visible in both ground and aeromagnetic surveys. Here, we provide a comprehensive mineralogical and rock magnetic data set to analyse NRM intensities and Koenigsberger ratios of 57 drill-core samples from the critical zone (CZ) of the anomaly high at depths between 41 and 131 m. This extends previous studies and verifies that the anomaly is due to an unusually high intensity of remanent magnetization carried by magnetite. The NRM of the CZ samples was acquired during the Olduvai subchron in a field of at most today’s strength. NRM intensities range from 20 to 128 A m–1 with a median of 55 A m–1, and an average of 61 A m–1, respectively, approximately 13–15 times higher than in typical Icelandic basalts (AIB) with an NRM intensity of 4 A m–1. Our new data set shows that the magnetite concentration throughout the CZ basalts is at most twofold higher than in AIB lavas. New data on domain state and TRM efficiency prove that these properties account for an additional factor of at most 2.3. Because magnetite is the most abundant remanence carrier in rocks on Earth, and its remanence acquisition is considered to be extremely well understood, we assert that the remaining discrepancy is a critical enigma in rock magnetism. Results from scanning electron microscopy show that a significant fraction of all CZ magnetite particles have dendritic shapes with grain sizes <1 μm, indicating rapid crystallization. Most large magnetite grains are heavily subdivided by very fine oxidation-exsolution lamellae of ilmenite, and subordinate amount of exsolved spinel as needles, blebs and blades. These common microstructures found throughout the CZ subdivide the initially homogeneous mineral into separate cubicles, here denoted as compartments. The magnetite compartments then have sizes below 1 μm. Hysteresis data, Preisach maps and FORC data consistently confirm that the coercivity distribution is dominated by values above 10 mT, such that multidomain behaviour is of little relevance in the CZ. Between 5 and 20 per cent of the IRM is carried by coercivities above 100 mT, which for magnetite indicates unusually high anisotropy effects in the individual particles. Based on the quantitative analysis of all magnetic contributions to the NRM, we can demonstrate that the average efficiency of NRM acquisition in the CZ Stardalur basalts must be at least a factor 3 higher than in typical basalts. We speculate that this is related to the observed focused compartment size distribution <1 μm, and indicates thermochemical remanence acquisition below the Curie temperature of magnetite. Yet, a detailed physical mechanism for the extreme overefficiency of NRM acquisition remains enigmatic.

     
    more » « less
  2. Abstract

    Interest in magnetic fields on the ancient Earth and other planetary bodies has motivated the paleomagnetic analysis of complex rocks such as meteorites that carry heterogeneous magnetizations at <<1 mm scales. The net magnetic moment of natural remanent magnetization (NRM) in such small samples is often below the detection threshold of common cryogenic magnetometers. The quantum diamond microscope (QDM) is an emerging magnetic imaging technology with ~1 μm resolution and can, in principle, recover magnetizations as weak as 10−17 Am2. However, the typically 1–100 μm sample‐to‐sensor distance of QDM measurements can result in complex (nondipolar) magnetic field maps, from which the net magnetic moment cannot be determined using a simple algorithm. Here we generate synthetic magnetic field maps to quantify the errors introduced by sample nondipolarity and by map processing procedures such as upward continuation. We find that inversions based on least squares dipole fits of upward continued data can recover the net moment of complex samples with <5% to 10% error for maps with signal‐to‐noise ratio (SNR) in the range typical of current generation QDMs. We validate these error estimates experimentally using comparisons between QDM maps and between QDM and SQUID microscope data, concluding that, within the limitations described here, the QDM is a robust technique for recovering the net magnetic moment of weakly magnetized samples. More sophisticated net moment fitting algorithms in the future can be combined with upward continuation methods described here to improve accuracy.

     
    more » « less
  3. null (Ed.)
    The absence of crustal magnetic fields above the martian basins Hellas, Argyre, and Isidis is often interpreted as proof of an early, before 4.1 billion years (Ga) ago, or late, after 3.9 Ga ago, dynamo. We revisit these interpretations using new MAVEN magnetic field data. Weak fields are present over the 4.5-Ga old Borealis basin, with the transition to strong fields correlated with the basin edge. Magnetic fields, confined to a near-surface layer, are also detected above the 3.7-Ga old Lucus Planum. We conclude that a dynamo was present both before and after the formation of the basins Hellas, Utopia, Argyre, and Isidis. A long-lived, Earth-like dynamo is consistent with the absence of magnetization within large basins if the impacts excavated large portions of strongly magnetic crust and exposed deeper material with lower concentrations of magnetic minerals. 
    more » « less
  4. null (Ed.)
    Geologic processes at convergent plate margins control geochemical cycling, seismicity, and deep biosphere activity in subduction zones and suprasubduction zone lithosphere. International Ocean Discovery Program (IODP) Expedition 366 was designed to address the nature of these processes in the shallow to intermediate depth of the Mariana subduction channel. Although no technology is available to permit direct sampling of the subduction channel of an intraoceanic convergent margin at depths up to 18 km, the Mariana forearc region (between the trench and the active volcanic arc) provides a means to access this zone. Active conduits, resulting from fractures in the forearc, are prompted by along- and across-strike extension that allows slab-derived fluids and materials to ascend to the seafloor along associated faults, resulting in the formation of serpentinite mud volcanoes. Serpentinite mud volcanoes of the Mariana forearc are the largest mud volcanoes on Earth. Their positions adjacent to or atop fault scarps on the forearc are likely related to the regional extension and vertical tectonic deformation in the forearc. Serpentinite mudflows at these volcanoes include serpentinized forearc mantle clasts, crustal and subducted Pacific plate materials, a matrix of serpentinite muds, and deep-sourced formation fluid. Mud volcanism on the Mariana forearc occurs within 100 km of the trench, representing a range of depths and temperatures to the downgoing plate and the subduction channel. These processes have likely been active for tens of millions of years at this site and for billions of years on Earth. At least 10 active serpentinite mud volcanoes have been located in the Mariana forearc. Two of these mud volcanoes are Conical and South Chamorro Seamounts, which are the furthest from the Mariana Trench at 86 and 78 km, respectively. Both seamounts were cored during Ocean Drilling Program (ODP) Legs 125 and 195, respectively. Data from these two seamounts represent deeper, warmer examples of the continuum of slab-derived materials as the Pacific plate subducts, providing a snapshot of how slab subduction affects fluid release, the composition of ascending fluids, mantle hydration, and the metamorphic paragenesis of subducted oceanic lithosphere. Data from the study of these two mud volcanoes constrain the pressure, temperature, and composition of fluids and materials within the subduction channel at depths of about 18 to 19 km. Understanding such processes is necessary for elucidating factors that control seismicity in convergent margins, tectonic and magma genesis processes in the forearc and volcanic arc, fluid and material fluxes, and the nature and variability of environmental conditions that impact subseafloor microbial communities. Expedition 366 centered on data collection from cores recovered from three serpentinite mud volcanoes that define a continuum of subduction-channel processes defined by the two previously cored serpentinite mud volcanoes and the trench. Three serpentinite mud volcanoes (Yinazao, Fantangisña, and Asùt Tesoro) were chosen at distances 55 to 72 km from the Mariana Trench. Cores were recovered from active sites of eruption on their summit regions and on the flanks where ancient flows are overlain by more recent ones. Recovered materials show the effects of dynamic processes that are active at these sites, bringing a range of materials to the seafloor, including materials from the lithosphere of the Pacific plate and from subducted seamounts (including corals). Most of the recovered material consists of serpentinite mud containing lithic clasts, which are derived from the underlying forearc crust and mantle and the subducting Pacific plate. Cores from each of the three seamounts drilled during Expedition 366, as well as those from Legs 125 and 195, include material from the underlying Pacific plate. A thin cover of pelagic sediment was recovered at many Expedition 366 sites, and at Site U1498 we cored through serpentinite flows to the underlying pelagic sediment and volcanic ash deposits. Recovered serpentinites are largely uniform in major element composition, with serpentinized ultramafic rocks and serpentinite muds spanning a limited range in SiO2 , MgO, and Fe2 O3 compositions. However, variation in trace element composition reflects pore fluid composition, which differs as a function of the temperature and pressure of the underlying subduction channel. Dissolved gases H2 , CH4 , and C2 H6 are highest at the site furthest from the trench, which also has the most active fluid discharge of the Expedition 366 serpentinite mud volcanoes. These dissolved gases and their active discharge from depth likely support active microbial communities, which were the focus of in-depth subsampling and preservation for shore-based analytical and culturing procedures. The effects of fluid discharge were also registered in the porosity and GRA density data indicated by higher than expected values at some of the summit sites. These higher values are consistent with overpressured fluids that minimize compaction of serpentinite mud deposits. In contrast, flank sites have significantly greater decreases in porosity with depth, suggesting that processes in addition to compaction are required to achieve the observed data. Thermal measurements reveal higher heat flow values on the flanks (~31 mW/m2) than on the summits (~17 mW/m2) of the seamounts. The new 2G Enterprises superconducting rock magnetometer (liquid helium free) revealed relatively high values of both magnetization and bulk magnetic susceptibility of discrete samples related to ultramafic rocks, particularly in dunite. Magnetite, a product of serpentinization, and authigenic carbonates were observed in the mudflow matrix materials. In addition to coring operations, Expedition 366 focused on the deployment and remediation of borehole casings for future observatories and set the framework for in situ experimentation. Borehole work commenced at South Chamorro Seamount, where the original-style CORK was partially removed. Work then continued at each of the three summit sites following coring operations. Cased boreholes with at least three joints of screened casing were deployed, and a plug of cement was placed at the bottom of each hole. Water samples were collected from two of the three boreholes, revealing significant inputs of formation fluids. This suggests that each of the boreholes tapped a hydrologic zone, making these boreholes suitable for experimentation with the future deployment of a CORK-lite. An active education and outreach program connected with many classrooms on shore and with the general public through social media. 
    more » « less
  5. We have conducted a paleomagnetic study of Holocene sediments from Lake Victoria in order to develop a high-resolution record of paleomagnetic secular variation (PSV). This study has recovered PSV records from two cores (V95-1P and V95-7P) in northern Lake Victoria (0.5°S). The PSV is recorded in fine-grained detrital magnetite/titanomagnetite grains, but the rock magnetic data suggest that significant magnetic mineral dissolution has occurred, which limits our paleomagnetic studies to the uppermost ~5 m of both cores. Detailed alternating field (af) demagnetization of the natural remanence (NRM) shows that a distinctive characteristic remanence (ChRM) is demagnetized from ~10 to 40 mT, which decreases simply toward the origin. The resulting directional PSV records for 1P and 7P are correlatable with 22 distinct inclination features and 19 declination features. Radiocarbon dating of the cores is based on eight radiocarbon dates from core 1P, which can be correlated into core 7P using both the PSV and rock magnetic/environmental measurements. The final PSV time series cover the last 11,000 years with an average sediment accumulation rate of ~40 cm/kyr. The Lake Victoria PSV records can be correlated with new PSV records from Lake Malawi. Comparison of the correlatable PSV feature ages between the two lakes indicates that the PSV records are not significantly different in age, although Lake Victoria PSV ages might average ~100 years younger. We think that the Lake Victoria and Lake Malawi PSV records, together, provide the most accurate, well-dated, and consistent record of Holocene PSV for Africa yet developed.

     
    more » « less