skip to main content


Title: Locus coeruleus in memory formation and Alzheimer's disease
Abstract

Catecholamine neurons of the locus coeruleus (LC) in the dorsal pontine tegmentum innervate the entire neuroaxis, with signaling actions implicated in the regulation of attention, arousal, sleep–wake cycle, learning, memory, anxiety, pain, mood, and brain metabolism. The co‐release of norepinephrine (NE) and dopamine (DA) from LC terminals in the hippocampus plays a role in all stages of hippocampal‐memory processing. This catecholaminergic regulation modulates the encoding, consolidation, retrieval, and reversal of hippocampus‐based memory. LC neurons in awake animals have two distinct firing modes: tonic firing (explorative) and phasic firing (exploitative). These two firing modes exert different modulatory effects on post‐synaptic dendritic spines. In the hippocampus, the firing modes regulate long‐term potentiation (LTP) and long‐term depression, which differentially regulate the mRNA expression and transcription of plasticity‐related proteins (PRPs). These proteins aid in structural alterations of dendritic spines, that is, structural long‐term potentiation (sLTP), via expansion and structural long‐term depression (sLTD) via contraction of post‐synaptic dendritic spines. Given the LC's role in all phases of memory processing, the degeneration of 50% of the LC neuron population occurring in Alzheimer's disease (AD) is a clinically relevant aspect of disease pathology. The loss of catecholaminergic regulation contributes to dysfunction in memory processes along with impaired functions associated with attention and task completion. The multifaceted role of the LC in memory and general task performance and the close correlation of LC degeneration with neurodegenerative disease progression together implicate it as a target for new clinical assessment tools.

 
more » « less
Award ID(s):
1926781
NSF-PAR ID:
10359791
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
European Journal of Neuroscience
Volume:
54
Issue:
8
ISSN:
0953-816X
Page Range / eLocation ID:
p. 6948-6959
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Neurons in the association cortices are particularly vulnerable in cognitive disorders such as schizophrenia and Alzheimer’s disease, while those in primary visual cortex remain relatively resilient. This review proposes that the special molecular mechanisms needed for higher cognitive operations confer vulnerability to dysfunction, atrophy, and neurodegeneration when regulation is lost due to genetic and/or environmental insults. Accumulating data suggest that higher cortical circuits rely on magnified levels of calcium (from NMDAR, calcium channels, and/or internal release from the smooth endoplasmic reticulum) near the postsynaptic density to promote the persistent firing needed to maintain, manipulate, and store information without “bottom-up” sensory stimulation. For example, dendritic spines in the primate dorsolateral prefrontal cortex (dlPFC) express the molecular machinery for feedforward, cAMP–PKA–calcium signaling. PKA can drive internal calcium release and promote calcium flow through NMDAR and calcium channels, while in turn, calcium activates adenylyl cyclases to produce more cAMP–PKA signaling. Excessive levels of cAMP–calcium signaling can have a number of detrimental effects: for example, opening nearby K + channels to weaken synaptic efficacy and reduce neuronal firing, and over a longer timeframe, driving calcium overload of mitochondria to induce inflammation and dendritic atrophy. Thus, calcium–cAMP signaling must be tightly regulated, e.g., by agents that catabolize cAMP or inhibit its production (PDE4, mGluR3), and by proteins that bind calcium in the cytosol (calbindin). Many genetic or inflammatory insults early in life weaken the regulation of calcium–cAMP signaling and are associated with increased risk of schizophrenia (e.g., GRM3 ). Age-related loss of regulatory proteins which result in elevated calcium–cAMP signaling over a long lifespan can additionally drive tau phosphorylation, amyloid pathology, and neurodegeneration, especially when protective calcium binding proteins are lost from the cytosol. Thus, the “genie” we need for our remarkable cognitive abilities may make us vulnerable to cognitive disorders when we lose essential regulation. 
    more » « less
  2. AMPA-type glutamate receptors (AMPARs) are tetrameric ligand-gated channels made up of combinations of GluA1-4 subunits and play important roles in synaptic transmission and plasticity. Here, we have investigated the development of AMPAR-mediated synaptic transmission in the hippocampus of the Fmr1 knock-out (KO) mouse, a widely used model of Fragile X syndrome (FXS). FXS is the leading monogenic cause of intellectual disability and autism spectrum disorders (ASD) and it is considered a neurodevelopmental disorder. For that reason, we investigated synaptic properties and dendritic development in animals from an early stage when synapses are starting to form up to adulthood. We found that hippocampal CA1 pyramidal neurons in the Fmr1-KO mouse exhibit a higher AMPAR-NMDAR ratio early in development but reverses to normal values after P13. This increase was accompanied by a larger presence of the GluA2-subunit in synaptic AMPARs that will lead to altered Ca 2+ permeability of AMPARs that could have a profound impact upon neural circuits, learning, and diseases. Following this, we found that young KO animals lack Long-term potentiation (LTP), a well-understood model of synaptic plasticity necessary for proper development of circuits, and exhibit an increased frequency of spontaneous miniature excitatory postsynaptic currents, a measure of synaptic density. Furthermore, post hoc morphological analysis of recorded neurons revealed altered dendritic branching in the KO group. Interestingly, all these anomalies are transitory and revert to normal values in older animals. Our data suggest that loss of FMRP during early development leads to temporary upregulation of the GluA2 subunit and this impacts synaptic plasticity and altering morphological dendritic branching. 
    more » « less
  3. The vertical lobe (VL) in the octopus brain plays an essential role in its sophisticated learning and memory. Early anatomical studies suggested that the VL is organized in a “fan-out fan-in” connectivity matrix comprising only three morphologically identified neuron types; input axons from the superior frontal lobe (SFL) innervating en passant millions of small amacrine interneurons (AMs) which converge sharply onto large VL output neurons (LNs). Recent physiological studies confirmed the feedforward excitatory connectivity: a glutamatergic synapse at the first SFL-to-AM synaptic layer and a cholinergic AM-to-LNs synapse. SFL-to-AMs synapses show a robust hippocampal-like activity-dependent long-term potentiation (LTP) of transmitter release. 5-HT, octopamine, dopamine, and nitric oxide modulate short- and long-term VL synaptic plasticity. Here we present a comprehensive histolabeling study to better characterize the neural elements in the VL. We generally confirmed glutamatergic SFLs and cholinergic AMs. Intense labeling for NOS activity in the AMs neurites fitted with the NO-dependent presynaptic LTP mechanism at the SFL-to-AM synapse. New discoveries here reveal more heterogeneity of the VL neurons than previously thought. GABAergic AMs suggest a subpopulation of inhibitory interneurons in the first input layer. Clear GABA labeling in the cell bodies of LNs supported an inhibitory VL output yet the LNs co-expressed FMRFamide-like neuropeptides suggesting an additional neuromodulatory role of the VL output. Furthermore, a group of LNs was glutamatergic. A new cluster of cells organized in a “deep nucleus” showed rich catecholaminergic labeling and may play a role in intrinsic neuromodulation. In situ hybridization and immunolabeling allowed characterization and localization of a rich array of neuropeptides and neuromodulators, likely involved in reward/punishment signals. This analysis of the fast transmission system, together with the newly found cellular elements helps integrate behavioral, physiological, pharmacological, and connectome findings into a more comprehensive understanding of an efficient learning and memory network. 
    more » « less
  4. Abstract

    Synapse clustering facilitates circuit integration, learning, and memory. Long-term potentiation (LTP) of mature neurons produces synapse enlargement balanced by fewer spines, raising the question of how clusters form despite this homeostatic regulation of total synaptic weight. Three-dimensional reconstruction from serial section electron microscopy (3DEM) revealed the shapes and distributions of smooth endoplasmic reticulum (SER) and polyribosomes, subcellular resources important for synapse enlargement and spine outgrowth. Compared to control stimulation, synapses were enlarged two hours after LTP on resource-rich spines containing polyribosomes (4% larger than control) or SER (15% larger). SER in spines shifted from a single tubule to complex spine apparatus after LTP. Negligible synapse enlargement (0.6%) occurred on resource-poor spines lacking SER and polyribosomes. Dendrites were divided into discrete synaptic clusters surrounded by asynaptic segments. Spine density was lowest in clusters having only resource-poor spines, especially following LTP. In contrast, resource-rich spines preserved neighboring resource-poor spines and formed larger clusters with elevated total synaptic weight following LTP. These clusters also had more shaft SER branches, which could sequester cargo locally to support synapse growth and spinogenesis. Thus, resources appear to be redistributed to synaptic clusters with LTP-related synapse enlargement while homeostatic regulation suppressed spine outgrowth in resource-poor synaptic clusters.

     
    more » « less
  5. Chronic exposure to uncontrollable stress causes loss of spines and dendrites in the prefrontal cortex (PFC), a recently evolved brain region that provides top-down regulation of thought, action, and emotion. PFC neurons generate top-down goals through recurrent excitatory connections on spines. This persistent firing is the foundation for higher cognition, including working memory, and abstract thought. However, exposure to acute uncontrollable stress drives high levels of catecholamine release in the PFC, which activates feedforward calcium-cAMP signaling pathways to open nearby potassium channels, rapidly weakening synaptic connectivity to reduce persistent firing. Chronic stress exposures can further exacerbate these signaling events leading to loss of spines and resulting in marked cognitive impairment. In this review, we discuss how stress signaling mechanisms can lead to spine loss, including changes to BDNF-mTORC1 signaling, calcium homeostasis, actin dynamics, and mitochondrial actions that engage glial removal of spines through inflammatory signaling. Stress signaling events may be amplified in PFC spines due to cAMP magnification of internal calcium release. As PFC dendritic spine loss is a feature of many cognitive disorders, understanding how stress affects the structure and function of the PFC will help to inform strategies for treatment and prevention. 
    more » « less