We present new results on the conversion of pure, undoped synthetic ferrihydrite, wet‐annealed at pH 6.56 and 90°C without stabilizing ligands, to nanophase goethite, hematite, and an intermediate magnetic phase, nanophase maghemite. Our analyses included magnetic field and temperature‐dependent properties and characterization by powder X‐ray diffraction, Mössbauer spectra, and high‐resolution transmission electron microscopy. We sampled alteration products after 0.5 hr, and then in a geometric progression to 32 hr, yielding a detailed examination of the earliest alteration phases. There are many similarities to the latest studies of pure ferrihydrite alteration but with a significant difference: We observe early appearance of oriented nanophase goethite along with a soft magnetic contribution, while rhombohedral hematite crystals form later, as reported in previous studies. Our observations attest to the non‐uniqueness of the magnetic enhancement process and to its strong dependence on environmental conditions, with important implications for use of the hematite/goethite ratio as a paleoprecipitation proxy.
more » « less- Award ID(s):
- 1642268
- NSF-PAR ID:
- 10359816
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geochemistry, Geophysics, Geosystems
- Volume:
- 21
- Issue:
- 7
- ISSN:
- 1525-2027
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The type-section of the Blackwater Draw Formation (BDF) consists of a series of five paleosol horizons developed on eolian deposits and an overlying surficial soil. Previous work has shown that magnetic properties (e.g., χ, ARM, and IRM) as a function of depth in this type-section, display both magnetically enhanced and magnetically depleted signals for different paleosols. To better understand the magnetic mineralogy responsible for these varying responses, various rock-magnetic experiments, scanning electron microscopy, and Mössbauer spectroscopy were conducted on representative samples from the six soil units which constitute the BDF type-section. Our results show that sub-micron hematite [with a minor contribution from single-domain sized hematite (Hc = ∼500 mT) dominates all the soils in terms of weight percent concentration. Whereas, low coercivity (Hc = ∼35 mT or less) magnetite/maghemitized-magnetite grains, largely in the PSD state (Mr/Ms=∼0.14 +/– 0.03588, Hcr/Hc=∼2.68 +/– 0.298789), dominate the magnetic signal. Magnetically depleted soils show a relatively higher proportion of goethite, while magnetically enhanced soils show an increased contribution from SP/SSD magnetite/maghemite phases.By combining our data-set with geochemically-derived climofunctions, we have correlated the magnetically preserved, depleted, and enhanced sections of the type-section to three distinct environmental phases (I-III). The basal sediments of Phase I displays relatively homogenous (neither enhanced nor depleted) magnetic properties due to relatively arid conditions and minimal alteration of southerly derive eolian sands. Conversely, Phase II-III represents a change in weathering intensities and provenance, resulting in a mix of southerly derived sands and northerly derived silts. Phase II, experienced greater precipitation levels, resulting in the dissolution of Fe-oxide phases and thus magnetic depletion. The uppermost Phase III experienced intermediate precipitation intensities resulting in magnetic enhancement.Using previously published age models we tentatively interpret these changing environmental conditions to be influenced by the Middle-Pleistocene Transition (1.2-0.7 Ma), where the Earth’s climatic cycles shifted from a ∼41 kyr to ∼100 kyr cycles. However, ambiguities persist due to uncertainties in the currently published age model. Due to the complexity of the magnetic signal, we recommend future studies utilize a holistic approach, incorporating rock-magnetic, geochemical, and microscopy observations for more accurate reconstruction of regional paleoenvironments.more » « less
-
Abstract Unlike most native metals, the unit cells of metal oxides tend to expand when crystallite sizes approach the nanoscale. Here we review different models that account for this behavior, and we present structural analyses for goethite (α-FeOOH) crystallites from ~10 to ~30 nm. The goethite was investigated during continuous particle growth via the hydrothermal transformation of 2-line ferrihydrite at pH 13.6 at 80, 90, and 100 °C using time-resolved, angle-dispersive synchrotron X-ray diffraction. Ferrihydrite gels were injected into polyimide capillaries with low background scattering, increasing the sensitivity for detecting diffraction from goethite nanocrystals that nucleated upon heating. Rietveld analysis enabled high-resolution extraction of crystallographic and kinetic data. Crystallite sizes for goethite increased with time at similar rates for all temperatures. With increasing crystallite size, goethite unit-cell volumes decreased, primarily as a result of contraction along the c-axis, the direction of closest-packing (space group Pnma). We introduce the coefficient of nanoscale contraction (CNC) as an analog to the coefficient of thermal expansion (CTE) to compare the dependence of lattice strain on crystallite size for goethite and other metal oxides, and we argue that nanoscale-induced crystallographic expansion is quantitatively similar to that produced when goethite is heated. In addition, our first-order kinetic model based on the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation yielded an activation energy for the transformation of ferrihydrite to goethite of 72.74 ± 0.2 kJ/mol, below reported values for hematite nucleation and growth.more » « less
-
Abstract Water can be stored in nominally anhydrous minerals as substitutional hydroxyl, generating vast but commonly unrecognized H2O reservoirs in ostensibly dry regimes. Researchers have long known that hematite (α-Fe2O3) can accommodate small concentrations of hydroxyl through the substitution of Fe3+ by 3H+. Our study of natural hematite has demonstrated the occurrence of “hydrohematite” phases that are 10–20 mol% deficient in Fe and accordingly contain 3.6–7.8 mol% structural water. Intergrown with natural hydrohematite samples were superhydrous goethite-like phases exhibiting an Fe deficiency of 10–20 mol% relative to end-member goethite (α-FeOOH). We synthesized hydrohematite in alkaline solutions (pH 9–12) at low temperatures (T < 200 °C) using fresh ferrihydrite as the transient precursor, and we observed a nonclassical crystallization pathway involving vacancy inoculation by Fe as nanocrystals evolved. The high level of incorporation of H2O in iron (hydr)oxides dramatically alters their behaviors as catalysts and pigments, and the presence of hydrohematite in rocks may rule out high-T diagenesis. We propose that hydrohematite is common in low-T occurrences of Fe oxide on Earth, and by extension it may inventory large quantities of water in apparently arid planetary environments, such as the surface of Mars.more » « less
-
The increase in fires at the wildland–urban interface has raised concerns about the potential environmental impact of ash remaining after burning. Here, we examined the concentrations and speciation of iron-bearing nanoparticles in wildland–urban interface ash. Total iron concentrations in ash varied between 4 and 66 mg g −1 . Synchrotron X-ray absorption near-edge structure (XANES) spectroscopy of bulk ash samples was used to quantify the relative abundance of major Fe phases, which were corroborated by transmission electron microscopy measurements. Maghemite (γ-(Fe 3+ ) 2 O 3 ) and magnetite (γ-Fe 2+ (Fe 3+ ) 2 O 4 ) were detected in most ashes and accounted for 0–90 and 0–81% of the spectral weight, respectively. Ferrihydrite (amorphous Fe( iii )–hydroxide, (Fe 3+ ) 5 HO 8 ·4H 2 O), goethite (α-Fe 3+ OOH), and hematite (α-Fe 3+ 2 O 3 ) were identified less frequently in ashes than maghemite and magnetite and accounted for 0–65, 0–54, and 0–50% of spectral weight, respectively. Other iron phases identified in ashes include wüstite (Fe 2+ O), zerovalent iron, FeS, FeCl 2 , FeCl 3 , FeSO 4 , Fe 2 (SO 4 ) 3 , and Fe(NO 3 ) 3 . Our findings demonstrate the impact of fires at the wildland–urban interface on iron speciation; that is, fires can convert iron oxides ( e.g. , maghemite, hematite, and goethite) to reduced iron phases such as magnetite, wüstite, and zerovalent iron. Magnetite concentrations ( e.g. , up to 25 mg g −1 ) decreased from black to gray to white ashes. Based on transmission electron microscopy (TEM) analyses, most of the magnetite nanoparticles were less than 500 nm in size, although larger particles were identified. Magnetite nanoparticles have been linked to neurodegenerative diseases as well as climate change. This study provides important information for understanding the potential environmental impacts of fires at the wildland–urban interface, which are currently poorly understood.more » « less
-
Abstract The Day diagram is used extensively in rock magnetism for domain state diagnosis. It has been shown recently to be fundamentally ambiguous for 10 sets of reasons. This ambiguity highlights the urgency for adopting suitable alternative approaches to identify the domain state of magnetic mineral components in rock magnetic studies. We evaluate 10 potential alternative approaches here and conclude that four have value for identifying data trends, but, like the Day diagram, they are affected by use of bulk parameters that compromise domain state diagnosis in complex samples. Three approaches based on remanence curve and hysteresis loop unmixing, when
supervised by independent data to avoid nonuniqueness of solutions, provide valuable component‐specific information that can be linked by inference to domain state. Three further approaches based on first‐order reversal curve diagrams provide direct domain state diagnosis with varying effectiveness. Environmentally important high‐coercivity hematite and goethite are represented with variable effectiveness in the evaluated candidate approaches. These minerals occur predominantly in noninteracting single‐domain particle assemblages in paleomagnetic contexts, so domain state diagnosis is more critical for ferrimagnetic minerals. Treating the high‐coercivity component separately following normal rock magnetic procedures allows focus on the more vexing problem of diagnosing domain state in ferrimagnetic mineral assemblages. We suggest a move away from nondiagnostic methods based on bulk parameters and adoption of approaches that provide unambiguous component‐specific domain state identification, among which various first‐order reversal curve‐based approaches provide diagnostic information.