skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Distinct microbial communities alter litter decomposition rates in a fertilized coastal plain wetland
Abstract Human activities have led to increased deposition of nitrogen (N) and phosphorus (P) into soils. Nutrient enrichment of soils is known to increase plant biomass and rates of microbial litter decomposition. However, interacting effects of hydrologic position and associated changes to soil moisture can constrain microbial activity and lead to unexpected nutrient feedbacks on microbial community structure–function relationships. Examining feedbacks of nutrient enrichment on decomposition rates is essential for predicting microbial contributions to carbon (C) cycling as atmospheric deposition of nutrients persists. This study explored how long‐term nutrient addition and contrasting litter chemical composition influenced soil bacterial community structure and function. We hypothesized that long‐term nutrient enrichment of low fertility soils alters bacterial community structure and leads to higher rates of litter decomposition especially for low C:N litter, but low‐nutrient and dry conditions limit microbial decomposition of high C:N ratio litter. We leveraged a long‐term fertilization experiment to test how nutrient enrichment and hydrologic manipulation (due to ditches) affected decomposition and soil bacterial community structure in a nutrient‐poor coastal plain wetland. We conducted a litter bag experiment and characterized litter‐associated and bulk soil microbiomes using 16S rRNA bacterial sequencing and quantified litter mass losses and soil physicochemical properties. Results revealed that distinct bacterial communities were involved in decomposing higher C:N ratio litter more quickly in fertilized compared to unfertilized soils especially under drier soil conditions, while decomposition rates of lower C:N ratio litter were similar between fertilized and unfertilized plots. Bacterial community structure in part explained litter decomposition rates, and long‐term fertilization and drier hydrologic status affected bacterial diversity and increased decomposition rates. However, community composition associated with high C:N litter was similar in wetter plots with available nitrate detected, regardless of fertilization treatment. This study provides insight into long‐term fertilization effects on soil bacterial diversity and composition, decomposition, and the increased potential for soil C loss as nutrient enrichment and hydrology interact to affect historically low‐nutrient ecosystems.  more » « less
Award ID(s):
1845845
PAR ID:
10359902
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecosphere
Volume:
12
Issue:
6
ISSN:
2150-8925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Campbell, Barbara J. (Ed.)
    ABSTRACT In nutrient-limited conditions, plants rely on rhizosphere microbial members to facilitate nutrient acquisition, and in return, plants provide carbon resources to these root-associated microorganisms. However, atmospheric nutrient deposition can affect plant-microbe relationships by changing soil bacterial composition and by reducing cooperation between microbial taxa and plants. To examine how long-term nutrient addition shapes rhizosphere community composition, we compared traits associated with bacterial (fast-growing copiotrophs, slow-growing oligotrophs) and plant (C 3 forb, C 4 grass) communities residing in a nutrient-poor wetland ecosystem. Results revealed that oligotrophic taxa dominated soil bacterial communities and that fertilization increased the presence of oligotrophs in bulk and rhizosphere communities. Additionally, bacterial species diversity was greatest in fertilized soils, particularly in bulk soils. Nutrient enrichment (fertilized versus unfertilized) and plant association (bulk versus rhizosphere) determined bacterial community composition; bacterial community structure associated with plant functional group (grass versus forb) was similar within treatments but differed between fertilization treatments. The core forb microbiome consisted of 602 unique taxa, and the core grass microbiome consisted of 372 unique taxa. Forb rhizospheres were enriched in potentially disease-suppressive bacterial taxa, and grass rhizospheres were enriched in bacterial taxa associated with complex carbon decomposition. Results from this study demonstrate that fertilization serves as a strong environmental filter on the soil microbiome, which leads to distinct rhizosphere communities and can shift plant effects on the rhizosphere microbiome. These taxonomic shifts within plant rhizospheres could have implications for plant health and ecosystem functions associated with carbon and nitrogen cycling. IMPORTANCE Over the last century, humans have substantially altered nitrogen and phosphorus cycling. Use of synthetic fertilizer and burning of fossil fuels and biomass have increased nitrogen and phosphorus deposition, which results in unintended fertilization of historically low-nutrient ecosystems. With increased nutrient availability, plant biodiversity is expected to decline, and the abundance of copiotrophic taxa is anticipated to increase in bacterial communities. Here, we address how bacterial communities associated with different plant functional types (forb, grass) shift due to long-term nutrient enrichment. Unlike other studies, results revealed an increase in bacterial diversity, particularly of oligotrophic bacteria in fertilized plots. We observed that nutrient addition strongly determines forb and grass rhizosphere composition, which could indicate different metabolic preferences in the bacterial communities. This study highlights how long-term fertilization of oligotroph-dominated wetlands could alter diversity and metabolism of rhizosphere bacterial communities in unexpected ways. 
    more » « less
  2. Abstract Continuous land disturbance could negatively impact microbial community, but perennial crops can potentially reverse this negativity. The objective of this study was to evaluate the effects of Kernza (Thinopyrum intermedium) and alfalfa (Medicago sativaL.) on soil microbial structure and stress condition using the phospholipid fatty acid profiling. The study was conducted at the Ross Jones Research Farm, University of Missouri and consisted of four treatments: Kernza fertilized, Kernza unfertilized, Kernza and alfalfa intercrop, and alfalfa monocrop with four replications. Treatments were established in September 2021 on 18.3 m × 18.3 m plots. Soils from 0‐ to 5‐cm and 5‐ to 15‐cm depths were sampled in September 2021 (before treatments were placed) and 2022 and analyzed for microbial communities. All microbial communities increased after 1 year with the perennial crops. Since differences were not significant among treatments in 2022, this may lead to positive impacts of perennial crops on microbial communities, irrespective of the crop species and management. Moreover, community structure modifications were also observed with the perennial crops, irrespective of the species and management, as evidenced with changes in bacterial community indices in 2022. While fungi/bacteria ratio increased, Gram‐positive/Gram‐negative bacteria ratio decreased in 2022, suggesting a reduction in microbial stress, which can be attributed to ecological functions of the perennial crops. The study showed improvements in soil microbial biomass and modifications in microbial community structure after 1 year of Kernza and alfalfa. As the system matures, relative benefits of management (fertilization and intercropping) and plant species may be realized. 
    more » « less
  3. Vegetation change of the Arctic tundra due to global warming is a well-known process, but the implication for the belowground microbial communities, key in nutrient cycling and decomposition, is poorly understood. We characterized the fungal and bacterial abundances in litter and soil layers across 16 warming experimental sites at 12 circumpolar locations. We investigated the relationship between microbial abundances and nitrogen (N) and carbon (C) isotopic signatures, indicating shifts in microbial processes with warming. Microbial abundances were 2–3 orders of magnitude larger in litter than in soil. Local, site-dependent responses of microbial abundances were variable, and no general effect of warming was detected. The only generalizable trend across sites was a dependence between the warming response ratios and C:N ratio in controls, highlighting a legacy of the vegetation on the microbial response to warming. We detected a positive effect of warming on the litter mass and δ 15 N, which was linked to bacterial abundance under warmed conditions. This effect was stronger in experimental sites dominated by deciduous shrubs, suggesting an altered bacterial N-cycling with increased temperatures, mediated by the vegetation, and with possible consequences on ecosystem feedbacks to climate change. 
    more » « less
  4. Litter decomposition determines soil organic matter (SOM) formation and plant‐available nutrient cycles. Therefore, accurate model representation of litter decomposition is critical to improving soil carbon (C) projections of bioenergy feedstocks. Soil C models that simulate microbial physiology (i.e., microbial models) are new to bioenergy agriculture, and their parameterization is often based on small datasets or manual calibration to reach benchmarks. Here, we reparameterized litter decomposition in a microbial soil C model (CORPSE ‐ Carbon, Organisms, Rhizosphere, and Protection in the Soil Environment) using the continental‐scale Long‐term Inter‐site Decomposition Experiment Team (LIDET) dataset which documents decomposition across a range of litter qualities over a decade. We conducted a simplified Monte Carlo simulation that constrained parameter values to reduce computational costs. The LIDET‐derived parameters improved modeled C and nitrogen (N) remaining, decomposition rates, and litter mean residence times as compared to Baseline parameters. We applied the LIDET litter decomposition parameters to a microbial bioenergy model (Fixation and Uptake of Nitrogen – Bioenergy Carbon, Rhizosphere, Organisms, and Protection) to examine soil C estimates generated by Baseline and LIDET parameters. LIDET parameters increased estimated soil C in bioenergy feedstocks, with even greater increases under elevated plant inputs (i.e., by increasing residue, N fertilization). This was due to the integrated effects of plant litter quantity, quality, and agricultural practices (tillage, fertilization). Collectively, we developed a simple framework for using large‐scale datasets to inform the parameterization of microbial models that impacts projections of soil C for bioenergy feedstocks. 
    more » « less
  5. Abstract Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large mammalian herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may affect both C and N pools and these changes likely interact with increases in soil nutrient availability. Given the scale of grassland soil fluxes, such changes can have striking consequences for atmospheric C concentrations and the climate. Here, we use the Nutrient Network experiment to examine the responses of soil C and N pools to mammalian herbivore exclusion across 22 grasslands, under ambient and elevated nutrient availabilities (fertilized with NPK + micronutrients). We show that the impact of herbivore exclusion on soil C and N pools depends on fertilization. Under ambient nutrient conditions, we observed no effect of herbivore exclusion, but under elevated nutrient supply, pools are smaller upon herbivore exclusion. The highest mean soil C and N pools were found in grazed and fertilized plots. The decrease in soil C and N upon herbivore exclusion in combination with fertilization correlated with a decrease in aboveground plant biomass and microbial activity, indicating a reduced storage of organic matter and microbial residues as soil C and N. The response of soil C and N pools to herbivore exclusion was contingent on temperature – herbivores likely cause losses of C and N in colder sites and increases in warmer sites. Additionally, grasslands that contain mammalian herbivores have the potential to sequester more N under increased temperature variability and nutrient enrichment than ungrazed grasslands. Our study highlights the importance of conserving mammalian herbivore populations in grasslands worldwide. We need to incorporate local‐scale herbivory, and its interaction with nutrient enrichment and climate, within global‐scale models to better predict land–atmosphere interactions under future climate change. 
    more » « less