skip to main content


Title: Ice matters: Life‐history strategies of two Antarctic seals dictate climate change eventualities in the Weddell Sea
Abstract

The impacts of climate change in Antarctica and the Southern Ocean are not uniform and ice‐obligate species with dissimilar life‐history characteristics will likely respond differently to their changing ecosystems. We use a unique data set of WeddellLeptonychotes weddelliiand crabeater seals' (CESs)Lobodon carcinophagabreeding season distribution in the Weddell Sea, determined from satellite imagery. We contrast the theoretical climate impacts on both ice‐obligate predators who differ in life‐history characteristics: CESs are highly specialized Antarctic krillEuphausia superbapredators and breed in the seasonal pack ice; Weddell seals (WESs) are generalist predators and breed on comparatively stable fast ice. We used presence–absence data and a suite of remotely sensed environmental variables to build habitat models. Each of the environmental predictors is multiplied by a ‘climate change score’ based on known responses to climate change to create a ‘change importance product’. Results show CESs are more sensitive to climate change than WESs. Crabeater seals prefer to breed close to krill, and the compounding effects of changing sea ice concentrations and sea surface temperatures, the proximity to krill and abundance of stable breeding ice, can influence their post‐breeding foraging success and ultimately their future breeding success. But in contrast to the Ross Sea, here WESs prefer to breed closer to larger colonies of emperor penguins (Aptenodytes forsteri). This suggests that the Weddell Sea may currently be prey‐abundant, allowing the only two air‐breathing Antarctic silverfish predators (Pleuragramma antarctica) (WESs and emperor penguins) to breed closer to each other. This is the first basin‐scale, region‐specific comparison of breeding season habitat in these two key Antarctic predators based on real‐world data to compare climate change responses. This work shows that broad‐brush, basin‐scale approaches to understanding species‐specific responses to climate change are not always appropriate, and regional models are needed—especially when designing marine protected areas.

 
more » « less
NSF-PAR ID:
10359915
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
27
Issue:
23
ISSN:
1354-1013
Page Range / eLocation ID:
p. 6252-6262
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Predators impact preyscapes (3-D distribution of forage species) by consuming prey according to their abilities or by altering prey behavior as they avoid being consumed. We elucidate prey (Antarctic silverfish[Pleuragramma antarctica] and crystal krill[Euphausia chrystallorophias]) responses to predation associated with the marginal ice zone (MIZ) of the McMurdo Sound, Antarctica, polynya. Prey abundance and habitat was sampled across a 30 × 15 km area by remotely-operated vehicle, and included locations that were accessible (ice edge) or inaccessible (solid fast ice) to air-breathing predators. Prey and habitat sampling coincided with bio-logging of Adélie penguins and observations of other air-breathing predators (penguins, seals, and whales), all of which were competing for the same prey. Adélie penguins dived deeper, and more frequently, near the ice edge. Lowered abundance of krill at the ice edge indicated they were depleted or were responding to increased predation and/or higher light levels along the ice edge. Penguin diet shifted increasingly to silverfish from krill during sampling, and was correlated with the arrival of krill-eating whales. Behaviorally-mediated, high trophic transfer characterizes the McMurdo Sound MIZ, and likely other MIZs, warranting more specific consideration in food web models and conservation efforts.

     
    more » « less
  2. null (Ed.)
    In a fast-changing world, polar ecosystems are threatened by climate variability. Understanding the roles of fine-scale processes, and linear and nonlinear effects of climate factors on the demography of polar species is crucial for anticipating the future state of these fragile ecosystems. While the effects of sea ice on polar marine top predators are increasingly being studied, little is known about the impacts of landfast ice (LFI) on this species community. Based on a unique 39-year time series of satellite imagery and in situ meteorological conditions and on the world's longest dataset of emperor penguin ( Aptenodytes forsteri ) breeding parameters, we studied the effects of fine-scale variability of LFI and weather conditions on this species' reproductive success. We found that longer distances to the LFI edge (i.e. foraging areas) negatively affected the overall breeding success but also the fledging success. Climate window analyses suggested that chick mortality was particularly sensitive to LFI variability between August and November. Snowfall in May also affected hatching success. Given the sensitivity of LFI to storms and changes in wind direction, important future repercussions on the breeding habitat of emperor penguins are to be expected in the context of climate change. 
    more » « less
  3. Abstract

    Satellites Over Seals (SOS), a project initiated in late 2016, is a crowdsourced method to determine factors behind the presence/absence patterns and to ultimately determine the global population of the Weddell seal (Leptonychotes weddellii). An iconic species, the Weddell seal is proposed to be part of the Antarctic Research and Monitoring Program required in the newly designated Ross Sea Region Marine Protected Area. This species is easy to detect via satellite imagery, due to its large size (3–4 m long, 1 m wide) and its dark color contrasting with the Antarctic coastal fast ice, where it aggregates on during breeding season. Using very high‐resolution satellite imagery (VHR; 0.31–0.60 m resolution) and the online platform Tomnod, we used VHR images from November 2010 and 2011 to cover the entirety of available fast ice around Antarctica. Before correcting for time of day or date, we searched for the presence/absence to identify a subset of where abundance estimates should be concentrated. More than 325 000 citizen scientists searched 790 VHR images, covering 268 611 km2of fast ice, to determine the locations of seals. Algorithms ranked searchers to the degree their votes corresponded with others, a measure of searcher relative quality that we used to filter out unreliable searchers. Seal presence was detected on only 0.55% of available maps (totaln = 1 116 058) within fast ice, revealing a sparse, irregular distribution. The rate of false‐negative detections was 1.7%, though false positives were high (67%), highlighting the importance of training for image interpretation to ensure differentiation between seals and landscape features (such as large rocks, ice chunks or depressions/holes in the ice). This approach not only allowed us to assess image resolution and quality, but also training, outreach and the effectiveness of this platform for introducing citizen scientists to the ecology of the Southern Ocean.

     
    more » « less
  4. We evaluated annual and regional variation in the dietary niche of Pygoscelis penguins including the sea ice-obligate Adélie penguin ( Pygoscelis adeliae ), and sea ice-intolerant chinstrap ( Pygoscelis antarcticus ) and gentoo ( Pygoscelis papua ) penguins, three species that nest throughout the western Antarctic Peninsula (AP) to test the sea ice trophic interaction hypothesis , which posits that penguin breeding populations with divergent trends, i.e., declining or increasing, are reliant on differing food webs. Our study relies on values of naturally occurring carbon ( 13 C/ 12 C, δ 13 C) and nitrogen ( 15 N/ 14 N, δ 15 N) stable isotopes as integrated proxies of penguin food webs measured over three years at three different breeding colonies. At Anvers Island in the north, where reductions in sea ice and changes in breeding population trends among sympatric sea ice-obligate (Adélie) and sea ice-intolerant (chinstrap and gentoo) penguins have been most notable, our analyses show that all three species of Pygoscelis penguins became more similar isotopically over the reproductive period. By late chick-rearing at Anvers Island, crèched chicks at 5-weeks-old for all species occupied similar trophic positions. Isotopic mixing models indicated that the proportions of prey provisioned by adult penguins to 5-week-old chicks at Anvers Island were generally similar across species within years, consisting primarily of Antarctic krill ( Euphausia superba ). Crèched Adélie chicks had higher δ 13 C and δ 15 N values at Avian and Charcot Islands, southern breeding colonies where sea ice is more prominent and populations of Adélie penguins have increased or remain stable. Trophic position increased with latitude, while the proportions of prey provisioned by Adélie penguin adults to chicks at southern breeding colonies included species typical of high Antarctic marine food webs, especially crystal krill ( Euphausia crystallorophias ). A Bayesian metric for dietary niche width, standard ellipse area (SEA-B), indicated that Pygoscelis penguins with greater population changes in the north had more variability in dietary niche width than stable populations further south. Our results lend insight on marine food web drivers of Pygoscelis penguin reproduction at the regional scale and question the long-standing paradigm that Antarctic krill are the only food web component critical to penguin reproductive survival in this region of the Southern Ocean. 
    more » « less
  5. Janke, Axel (Ed.)
    Leopard seals ( Hydrurga leptonyx ) are top predators that can exert substantial top-down control of their Antarctic prey species. However, population trends and genetic diversity of leopard seals remain understudied, limiting our understanding of their ecological role. We investigated the genetic diversity, effective population size and demographic history of leopard seals to provide fundamental data that contextualizes their predatory influence on Antarctic ecosystems. Ninety leopard seals were sampled from the northern Antarctic Peninsula during the austral summers of 2008–2019 and a 405bp segment of the mitochondrial control region was sequenced for each individual. We uncovered moderate levels of nucleotide (π = 0.013) and haplotype (Hd = 0.96) diversity, and the effective population size was estimated at around 24,000 individuals (NE = 24,376; 95% CI: 16,876–33,126). Consistent with findings from other ice-breeding pinnipeds, Bayesian skyline analysis also revealed evidence for population expansion during the last glacial maximum, suggesting that historical population growth may have been boosted by an increase in the abundance of sea ice. Although leopard seals can be found in warmer, sub-Antarctic locations, the species’ core habitat is centered on the Antarctic, making it inherently vulnerable to the loss of sea ice habitat due to climate change. Therefore, detailed assessments of past and present leopard seal population trends are needed to inform policies for Antarctic ecosystems. 
    more » « less