skip to main content


Title: The leaf polarity factors SGS3 and YABBYs regulate style elongation through auxin signaling in Mimulus lewisii
Summary

Style length is a major determinant of breeding strategies in flowering plants and can vary dramatically between and within species. However, little is known about the genetic and developmental control of style elongation.

We characterized the role of two classes of leaf adaxial–abaxial polarity factors, SUPPRESSOR OF GENE SILENCING3 (SGS3) and the YABBY family transcription factors, in the regulation of style elongation inMimulus lewisii. We also examined the spatiotemporal patterns of auxin response during style development.

Loss ofSGS3function led to reduced style length via limiting cell division, and downregulation ofYABBYgenes by RNA interference resulted in shorter styles by decreasing both cell division and cell elongation. We discovered an auxin response minimum between the stigma and ovary during the early stages of pistil development that marks style differentiation. Subsequent redistribution of auxin response to this region was correlated with style elongation. Auxin response was substantially altered when bothSGS3andYABBYfunctions were disrupted.

We suggest that auxin signaling plays a central role in style elongation and that the way in which auxin signaling controls the different cell division and elongation patterns underpinning natural style length variation is a major question for future research.

 
more » « less
Award ID(s):
1755373
NSF-PAR ID:
10359975
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
232
Issue:
5
ISSN:
0028-646X
Page Range / eLocation ID:
p. 2191-2206
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    The petal spur of the basal eudicotAquilegiais a key innovation associated with the adaptive radiation of the genus. Previous studies have shown that diversification ofAquilegiaspur length can be predominantly attributed to variation in cell elongation. However, the genetic pathways that control the development of petal spurs are still being investigated.

    Here, we focus on a pair of closely related homologs of the AUXIN RESPONSE FACTOR family,AqARF6andAqARF8, to explore their roles inAquileiga coeruleapetal spur development.

    Expression analyses of the two genes show that they are broadly expressed in vegetative and floral organs, but have relatively higher expression in petal spurs, particularly at later stages. Knockdown of the twoAqARF6andAqARF8transcripts using virus‐induced gene silencing resulted in largely petal‐specific defects, including a significant reduction in spur length due to a decrease in cell elongation. These spurs also exhibited an absence of nectar production, which was correlated with downregulation ofSTYLISHhomologs that have previously been shown to control nectary development.

    This study provides the first evidence ofARF6/8homolog‐mediated petal development outside the core eudicots. The genes appear to be specifically required for cell elongation and nectary maturation in theAquilegiapetal spur.

     
    more » « less
  2. Abstract

    Auxin is a hormone that is required for hypocotyl elongation during seedling development. In response to auxin, rapid changes in transcript and protein abundance occur in hypocotyls, and some auxin responsive gene expression is linked to hypocotyl growth. To functionally validate proteomic studies, a reverse genetics screen was performed on mutants in auxin‐regulated proteins to identify novel regulators of plant growth. This uncovered a long hypocotyl mutant, which we calledslim shady, in an annotated insertion line inIMMUNOREGULATORY RNA‐BINDING PROTEIN(IRR). Overexpression of theIRRgene failed to rescue theslim shadyphenotype and characterization of a second T‐DNA allele of IRR found that it had a wild‐type (WT) hypocotyl length. Theslim shadymutant has an elevated expression of numerous genes associated with the brassinosteroid‐auxin‐phytochrome (BAP) regulatory module compared to WT, including transcription factors that regulate brassinosteroid, auxin, and phytochrome pathways. Additionally,slim shadyseedlings fail to exhibit a strong transcriptional response to auxin. Using whole genome sequence data and genetic complementation analysis with SALK_015201C, we determined that a novel single nucleotide polymorphism inPHYTOCHROME Bwas responsible for theslim shadyphenotype. This is predicted to induce a frameshift and premature stop codon at leucine 1125, within the histidine kinase‐related domain of the carboxy terminus of PHYB, which is required for phytochrome signaling and function. Genetic complementation analyses withphyb‐9confirmed thatslim shadyis a mutant allele ofPHYB. This study advances our understanding of the molecular mechanisms in seedling development, by furthering our understanding of how light signaling is linked to auxin‐dependent cell elongation. Furthermore, this study highlights the importance of confirming the genetic identity of research material before attributing phenotypes to known mutations sourced from T‐DNA stocks.

     
    more » « less
  3. Abstract

    The domestic sunflower (Helianthus annuusL. cv. ‘Giganteus’) has been used since the 19th century as a model plant for the study of seedling development in darkness and white light (WL) (scoto‐versusphotomorphogenesis). However, most pertinent studies have focused on the developmental patterns of the hypocotyl and cotyledons, whereas the root system has been largely ignored.

    In this study, we analysed entire sunflower seedlings (root and shoot) and quantified organ development in the above‐ and belowground parts of the organism under natural (non‐sterile) conditions.

    We document that seedlings, raised in moist vermiculite, are covered with methylobacteria, microbes that are known to promote root development inArabidopsis. Quantitative data revealed that during photomorphogenesis inWL, the root system expands by 90%, whereas stem elongation is inhibited, and hook opening/cotyledon expansion occurs. Root morphogenesis may be mediatedviaimported sucrose provided by the green, photosynthetically active cotyledons. This hypothesis is supported by the documented effect of sucrose on the induction of lateral root initials in sunflower cuttings. Under these experimental conditions, phytohormones (auxin, cytokinin, brassinolide) exerted little effect on root and cotyledon expansion, and no hormone‐induced initiation of lateral roots was observed.

    It is concluded that sucrose not only acts as an energy source to fuel cell metabolism but is also a shoot‐derived signalling molecule that triggers root morphogenesis.

     
    more » « less
  4. Summary

    Distyly is an intriguing floral adaptation that increases pollen transfer precision and restricts inbreeding. It has been a model system in evolutionary biology since Darwin. Although theS‐locus determines the long‐ and short‐styled morphs, the genes were unknown inTurnera. We have now identified these genes.

    We used deletion mapping to identify, and then sequence,BACclones and genome scaffolds to constructS/shaplotypes. We investigated candidate gene expression, hemizygosity, and used mutants, to explore gene function.

    Thes‐haplotype possessed 21 genes collinear with a region of chromosome 7 of grape. TheS‐haplotype possessed three additional genes and two inversions.TsSPH1was expressed in filaments and anthers,TsYUC6in anthers andTsBAHDin pistils. Long‐homostyle mutants did not possessTsBAHDand a short‐homostyle mutant did not expressTsSPH1.

    Three hemizygous genes appear to determine S‐morph characteristics inT. subulata. Hemizygosity is common to all distylous species investigated, yet the genes differ. The pistil candidate gene,TsBAHD, differs from that ofPrimula, but both may inactivate brassinosteroids causing short styles.TsYUC6is involved in auxin synthesis and likely determines pollen characteristics.TsSPH1is likely involved in filament elongation. We propose an incompatibility mechanism involvingTsYUC6andTsBAHD.

     
    more » « less
  5. Summary

    In species with compound leaves, the positions of leaflet primordium initiation are associated with local peaks of auxin accumulation. However, the role of auxin during the late developmental stages and outgrowth of compound leaves remains largely unknown.

    Using genome resequencing approaches, we identified insertion sites at four alleles of theLATERAL LEAFLET SUPPRESSION1(LLS1) gene, encoding the auxin biosynthetic enzyme YUCCA1 inMedicago truncatula.

    Linkage analysis and complementation tests showed that thells1mutant phenotypes were caused by theTnt1insertions that disrupted theLLS1gene. The transcripts ofLLS1can be detected in primordia at early stages of leaf initiation and later in the basal regions of leaflets, and finally in vein tissues at late leaf developmental stages. Vein numbers and auxin content are reduced in thells1‐1mutant. Analysis of thells1 sgl1andlls1 palm1double mutants revealed thatSGL1is epistatic toLLS1, andLLS1works withPALM1in an independent pathway to regulate the growth of lateral leaflets.

    Our work demonstrates that the YUCCA1/YUCCA4 subgroup plays very important roles in the outgrowth of lateral leaflets during compound leaf development ofM. truncatula, in addition to leaf venation.

     
    more » « less