skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Recent Warming Fuels Increased Organic Carbon Export From Arctic Permafrost
Abstract Climate‐driven thawing of Arctic permafrost renders its vast carbon reserves susceptible to microbial degradation, serving as a potentially potent positive feedback hidden within the climate system. While seemingly intuitive, the relationship between thermally driven permafrost losses and organic carbon (OC) export remains largely unexplored in natural settings. Filling this knowledge gap, we present down‐core bulk and compound‐specific radiocarbon records of permafrost change from a sediment core taken within the Alaskan Colville River delta spanning the lastc. 2,700 years. Fingerprinted by significantly older radiocarbon ages of bulk OC and long‐chain fatty acids, these data expose a thermally driven increase in permafrost OC export and/or deepening of mobilizable permafrost layers over the lastc. 160 years after the Little Ice Age. Comparison of OC content and radiocarbon data between recent and Roman warming episodes likely implies that the rate of warming, alongside the prevailing boundary conditions, may dictate the ultimate fate of the Arctic's permafrost inventory. Our findings highlight the importance of leveraging geological records as archives of Arctic permafrost mobilization dynamics with temperature change.  more » « less
Award ID(s):
1755125 1820883
PAR ID:
10360132
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
AGU Advances
Volume:
2
Issue:
2
ISSN:
2576-604X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent anthropogenic warming in the Arctic has caused accelerated permafrost thaw, leading to the export of relict organic carbon (OC) to the atmosphere and surrounding depositional environments. Past episodes of warmth exceeding pre-industrial temperatures, such as the Holocene Thermal Maximum (HTM; 11 to 8 kiloannum (ka) at our study site), may serve as an analogue for how the Arctic carbon cycle responds to ongoing warming. We reconstructed accumulation rates of three OC endmembers (contemporaneous aquatic biomass, postglacial soil, and MIS 5 soil) at Lake CF8, northeastern Baffin Island, during the 12.4 kyr (kiloyear) since local deglaciation. We characterized OC endmembers and downcore sediment mixtures using Ramped Pyrolysis/Oxidation (RPO), radiocarbon (14C) age offsets between bulk sediment and macrofossils, and stable carbon isotopes (δ13C). We modeled endmember contributions to the lake sediment using the Bayesian mixing framework, MixSIAR. RPO revealed similar patterns between OC volatilization and pyrolysis temperature indicating minimal OC degradation between source and sink. Endmember OC accumulation rates, accounting for MixSIAR results, sedimentation, and total OC content, showed that mean postglacial soil inputs to Lake CF8 were greatest between 11.9 and 9.0 ka, 1.5 times greater than the rest of the record. This period coincided with regional peak Holocene summer temperatures (up to 5 °C (celsius) warmer than the pre industrial average), despite having low 14C age-offsets. Since modern Arctic temperatures have already warmed by 2-3 °C, similar to the HTM, regional permafrost may be mobilized at the same rates that we estimate for the early Holocene. 
    more » « less
  2. Abstract Climate change is dramatically altering Arctic ecosystems, leading to shifts in the sources, composition, and eventual fate of riverine dissolved organic matter (DOM) in the Arctic Ocean. Here we examine a 6‐year DOM compositional record from the six major Arctic rivers using Fourier‐transform ion cyclotron resonance mass spectrometry paired with dissolved organic carbon isotope data (Δ14C, δ13C) to investigate how seasonality and permafrost influence DOM, and how DOM export may change with warming. Across the pan‐Arctic, DOM molecular composition demonstrates synchrony and stability. Spring freshet brings recently leached terrestrial DOM with a latent high‐energy and potentially bioavailable subsidy, reconciling the historical paradox between freshet DOM's terrestrial bulk signatures and high biolability. Winter features undiluted baseflow DOM sourced from old, microbially degraded groundwater DOM. A stable core Arctic riverine fingerprint (CARF) is present in all samples and may contribute to the potential carbon sink of persistent, aged DOM in the global ocean. Future warming may lead to shifting sources of DOM and export through: (1) flattening Arctic hydrographs and earlier melt modifying the timing and role of the spring high‐energy subsidy; (2) increasing groundwater discharge resulting in a greater fraction of DOM export to the ocean occurring as stable and aged molecules; and (3) increasing contribution of nitrogen/sulfur‐containing DOM from microbial degradation caused by increased connectivity between groundwater and surface waters due to permafrost thaw. Our findings suggest the ubiquitous CARF (which may contribute to oceanic carbon sequestration) underlies predictable variations in riverine DOM composition caused by seasonality and permafrost extent. 
    more » « less
  3. The carbon stored in permafrost deposits represents the single largest soil carbon reservoir on Earth. Concerns about the instability and dynamics of this carbon reservoir during permafrost thaw associated with polar amplification of climate warming contribute a large part of the uncertainty in forecasting future climate. We have been studying the carbon dynamics of permafrost deposits contained in the floodplains of large Arctic rivers. Across Arctic floodplains, accelerating bank erosion can liberate permafrost organic carbon (OC) as carbon dioxide (CO2) or methane (CH4), and/or redeposit it in fluvial units. These different fates have very different implications for climate feedback. Determining OC stocks and their dynamics in Arctic floodplain cutbanks and point bars, as well as the OC load in fluvial transport, is essential to better understand the recycling and export of permafrost carbon. As part of a National Science Foundation (NSF) funded project to better understand the effects of erosion in the Yukon River Basin, floodplain sediments were collected between June and September 2022 at two locations underlain by discontinuous permafrost within the Yukon River Basin in Alaska: Beaver (65.700° North (N), 156.387° West (W)) and Huslia (66.362° N, 147.398° W). This dataset mainly reports OC contents for collected subsurface sediments in floodplains measured by elemental analyzer. The coupled mercury content can be found in Isabel et al., 2024 (https://doi.org/10.18739/A2RF5KH5J). 
    more » « less
  4. Abstract Climate change is thawing and potentially mobilizing vast quantities of organic carbon (OC) previously stored for millennia in permafrost soils of northern circumpolar landscapes. Climate‐driven increases in fire and thermokarst may play a key role in OC mobilization by thawing permafrost and promoting transport of OC. Yet, the extent of OC mobilization and mechanisms controlling terrestrial‐aquatic transfer are unclear. We demonstrate that hydrologic transport of soil dissolved OC (DOC) from the active layer and thawing permafrost to headwater streams is extremely heterogeneous and regulated by the interactions of soils, seasonal thaw, fire, and thermokarst. Repeated sampling of streams in eight headwater catchments of interior Alaska showed that the mean age of DOC for each stream ranges widely from modern to ∼2,000 years B.P. Together, an endmember mixing model and nonlinear, generalized additive models demonstrated that Δ14C‐DOC signature (and mean age) increased from spring to fall, and was proportional to hydrologic contributions from a solute‐rich water source, related to presumed deeper flow paths found predominantly in silty catchments. This relationship was correlated with and mediated by catchment properties. Mean DOC ages were older in catchments with >50% burned area, indicating that fire is also an important explanatory variable. These observations underscore the high heterogeneity in aged C export and difficulty of extrapolating estimates of permafrost‐derived DOC export from watersheds to larger scales. Our results provide the foundation for developing a conceptual model of permafrost DOC export necessary for advancing understanding and prediction of land‐water C exchange in changing boreal landscapes. 
    more » « less
  5. Abstract Climate-driven permafrost thaw can release ancient carbon to the atmosphere, begetting further warming in a positive feedback loop. Polar ice core data and young radiocarbon ages of dissolved methane in thermokarst lakes have challenged the importance of this feedback, but field studies did not adequately account for older methane released from permafrost through bubbling. We synthesized panarctic isotope and emissions datasets to derive integrated ages of panarctic lake methane fluxes. Methane age in modern thermokarst lakes (3132 ± 731 years before present) reflects remobilization of ancient carbon. Thermokarst-lake methane emissions fit within the constraints imposed by polar ice core data. Younger, albeit ultimately larger sources of methane from glacial lakes, estimated here, lagged those from thermokarst lakes. Our results imply that panarctic lake methane release was a small positive feedback to climate warming, comprising up to 17% of total northern hemisphere sources during the deglacial period. 
    more » « less