skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Consistent Predictability of the Ocean State Ocean Model Using Information Theory and Flushing Timescales
Abstract The Ocean State Ocean Model (OSOM) is an application of the Regional Ocean Modeling System spanning the Rhode Island waterways, including Narragansett Bay, Mt. Hope Bay, larger rivers, and the Block Island Shelf circulation from Long Island to Nantucket. This study discusses the physical aspects of the estuary (Narragansett and Mount Hope Bays and larger rivers) to evaluate physical circulation predictability. This estimate is intended to help decide if a forecast and prediction system is warranted, to prepare for coupling with biogeochemistry and fisheries models with widely disparate timescales, and to find the spin‐up time needed to establish the climatological circulation of the region. Perturbed initial condition ensemble simulations are combined with metrics from information theory to quantify the predictability of the OSOM forecast system–i.e., how long anomalies from different initial conditions persist. The predictability timescale in this model agrees with readily estimable timescales such as the freshwater flushing timescale evaluated using the total exchange flow (TEF) framework, indicating that the estuarine dynamics rather than chaotic transport is the dominant model behavior limiting predictions. The predictability of the OSOM is ∼7–40 days, varying with parameters, region, and season.  more » « less
Award ID(s):
1655221
PAR ID:
10360148
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
126
Issue:
7
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The Ocean State Ocean Model OSOM is an application of the Regional Ocean Modeling System spanning the Rhode Island waterways, including Narragansett Bay, Mt. Hope Bay, larger rivers, and the Block Island Shelf circulation from Long Island to Nantucket. This paper discusses the physical aspects of the estuary (Narragansett and Mount Hope Bays and larger rivers) to evaluate physical circulation predictability. This estimate is intended to help decide if a forecast and prediction system is warranted, to prepare for coupling with biogeochemistry and fisheries models with widely disparate timescales, and to find the spin-up time needed to establish the climatological circulation of the region. Perturbed initial condition ensemble simulations are combined with metrics from information theory to quantify the predictability of the OSOM forecast system--i.e., how long anomalies from different initial conditions persist. The predictability timescale in this model agrees with readily estimable timescales such as the freshwater flushing timescale evaluated using the total exchange flow (TEF) framework, indicating that the estuarine dynamics rather than chaotic transport is the dominant model behavior limiting predictions. The predictability of the OSOM is ~ 7 to 40 days, varying with parameters, region, and season. 
    more » « less
  2. Mulholland, Margaret R (Ed.)
    In 2016-17, shellfish harvesting closed for the first time in Narragansett Bay, Rhode Island, USA, from domoic acid (DA), a neurotoxin produced by diatoms of the Pseudo-nitzschia genus. Pseudo-nitzschia have occurred frequently for over 60 years in Narragansett Bay’s Long-Term Plankton Time Series (NBPTS), therefore it is surprising that the first closure only recently occurred. Pseudo-nitzschia species are known to vary in their toxin production, thus species identification is critical for understanding the underlying ecological causes of these harmful algal blooms (HABs). DNA in plankton biomass can be preserved for many years, so molecular barcoding of archived samples is useful for delineation of taxa over time. This study used amplification of the Pseudo-nitzschia -specific 18S-5.8S rDNA internal transcribed spacer region 1 (ITS1) in plankton samples and high throughput sequencing to characterize Pseudo-nitzschia species composition over a decade in Narragansett Bay, including eight years before the 2016-17 closures and two years following. This metabarcoding method can discriminate nearly all known Pseudo-nitzschia species. Several species recur as year-round residents in Narragansett Bay ( P. pungens var. pungens, P. americana, P. multiseries , and P. calliantha ). Various other species increased in frequency after 2015, and some appeared for the first time during the closure period. Notably, P. australis , a species prevalent in US West Coast HABs and known for high DA production, was not observed in Narragansett Bay until the 2017 closure but has been present in several years after the closures. Annual differences in Pseudo-nitzschia composition were correlated with physical and chemical conditions, predominantly water temperature. The long-term composition trends of Pseudo-nitzschia in Narragansett Bay serve as a baseline for identifying the introduction of new species, understanding shifting assemblages that contributed to the 2016-17 closures, and monitoring species that may be cause for future concern. 
    more » « less
  3. Interannual variations in marine net primary production (NPP) contribute to the variability of available living marine resources, as well as influence critical carbon cycle processes. Here we provide a global overview of near‐term (1 to 10 years) potential predictability of marine NPP using a novel set of initialized retrospective decadal forecasts from an Earth System Model. Interannual variations in marine NPP are potentially predictable in many areas of the ocean 1 to 3 years in advance, from temperate waters to the tropics, showing a substantial improvement over a simple persistence forecast. However, some regions, such as the subpolar Southern Ocean, show low potential predictability. We analyze how bottom‐up drivers of marine NPP (nutrients, light, and temperature) contribute to its predictability. Regions where NPP is primarily driven by the physical supply of nutrients (e.g., subtropics) retain higher potential predictability than high‐latitude regions where NPP is controlled by light and/or temperature (e.g., the Southern Ocean). We further examine NPP predictability in the world's Large Marine Ecosystems. With a few exceptions, we show that initialized forecasts improve potential predictability of NPP in Large Marine Ecosystems over a persistence forecast and may aid to manage living marine resources. 
    more » « less
  4. Gobler, Christopher (Ed.)
    Pseudo-nitzschia harmful algal blooms have recently caused elevated domoic acid in coastal environments of the Northeast United States. In 2017, the toxigenic species P. australis was observed in Narragansett Bay, Rhode Island, a temperate estuarine ecosystem, for the first time since 2009 when DNA monitoring for Pseudo-nitzschia species began. This highly toxic species likely contributed to toxin-related shellfish harvest closures and is hypothesized to have been introduced by an offshore source. Little is known about offshore Pseudo-nitzschia spp. populations in the Northeast Continental Shelf marine ecosystem or how often toxigenic species enter Narragansett Bay through physical processes. Here, we collected filtered biomass samples from multiple time series sites within Narragansett Bay and along the Northeast U.S. Shelf Long-Term Ecological Research transect in winter and summer to investigate the frequency and seasonality of potential Pseudo-nitzschia spp. inflow from the continental shelf to the estuary. Species were taxonomically identified using DNA sequencing of the ITS1 region and domoic acid concentrations were quantified by liquid chromatography with tandem mass spectrometry and multiple reaction monitoring. During six years of sampling, Pseudo-nitzschia species assemblages were more similar between Narragansett Bay and the Northeast shelf in winter than summer, suggesting greater ecosystem connectivity in winter. These winter assemblages were often accompanied by higher domoic acid. Several Pseudo-nitzschia species co-occurred most often with domoic acid and were likely responsible for toxin production in this region, including P. pungens var. pungens, P. multiseries, P. calliantha, P. plurisecta, P. australis, and P. fraudulenta. Domoic acid was detected during periods of relatively low macronutrient concentrations in both seasons, warmer sea surface temperatures in winter, and colder temperatures in summer within this dataset. This study represents some of the first domoic acid measurements on the offshore Northeast U.S. Continental Shelf, a region that supplies water to other coastal environments and could seed future harmful algal blooms. The elevated domoic acid and frequency of hypothesized inflow of toxigenic Pseudo-nitzschia spp. from the Northeast continental shelf to Narragansett Bay in winter indicate the need to monitor coastal and offshore environments for toxins and harmful algal bloom taxa during colder months. 
    more » « less
  5. Abstract The northeast periphery of the Scotia Sea hosts one of the largest chlorophyll‐a blooms of the Southern Ocean. This bloom peaks to the northwest of the island of South Georgia, extending eastward for hundreds of kilometers. Although the Southern Ocean has many islands of similar size, South Georgia is ecologically one of the most significant: It not only sustains one of the Southern Ocean's largest and most diverse ecosystems but also constitutes its single most important region for biological carbon sequestration. While the exceptional nature of South Georgia's blooms has been recognized widely, both the physical processes that contribute to their fertilization and the reasons why these blooms are larger than those of other similar regions (e.g., Kerguelen or Crozet Islands) are poorly understood. We use the results of a high‐resolution ocean model to investigate the physical processes that mediate the entrainment of deep, iron‐rich waters into the surface layers of the South Georgia region. We show that the Southern Antarctic Circumpolar Current Front, the southernmost jet of the Antarctic Circumpolar Current (ACC), pumps iron‐enriched waters from the deep ocean onto the bottom layers of South Georgia's shelf. These waters are upwelled along the northern coast of the island and are then exported into the Georgia Basin, where topographically steered circulation shields them from the dispersive effects of local currents and eddies, thus allowing the bloom development. 
    more » « less