Abstract Nutrient enrichment can simultaneously increase and destabilise plant biomass production, with co‐limitation by multiple nutrients potentially intensifying these effects. Here, we test how factorial additions of nitrogen (N), phosphorus (P) and potassium with essential nutrients (K+) affect the stability (mean/standard deviation) of aboveground biomass in 34 grasslands over 7 years. Destabilisation with fertilisation was prevalent but was driven by single nutrients, not synergistic nutrient interactions. On average, N‐based treatments increased mean biomass production by 21–51% but increased its standard deviation by 40–68% and so consistently reduced stability. Adding P increased interannual variability and reduced stability without altering mean biomass, while K+ had no general effects. Declines in stability were largest in the most nutrient‐limited grasslands, or where nutrients reduced species richness or intensified species synchrony. We show that nutrients can differentially impact the stability of biomass production, with N and P in particular disproportionately increasing its interannual variability.
more »
« less
Nitrogen and phosphorus enrichment cause declines in invertebrate populations: a global meta‐analysis
ABSTRACT Human‐driven changes in nitrogen (N) and phosphorus (P) inputs are modifying biogeochemical cycles and the trophic state of many habitats worldwide. These alterations are predicted to continue to increase, with the potential for a wide range of impacts on invertebrates, key players in ecosystem‐level processes. Here, we present a meta‐analysis of 1679 cases from 207 studies reporting the effects of N, P, and combined N + P enrichment on the abundance, biomass, and richness of aquatic and terrestrial invertebrates. Nitrogen and phosphorus additions decreased invertebrate abundance in terrestrial and aquatic ecosystems, with stronger impacts under combined N + P additions. Likewise, N and N + P additions had stronger negative impacts on the abundance of tropical than temperate invertebrates. Overall, the effects of nutrient enrichment did not differ significantly among major invertebrate taxonomic groups, suggesting that changes in biogeochemical cycles are a pervasive threat to invertebrate populations across ecosystems. The effects of N and P additions differed significantly among invertebrate trophic groups but N + P addition had a consistent negative effect on invertebrates. Nutrient additions had weaker or inconclusive impacts on invertebrate biomass and richness, possibly due to the low number of case studies for these community responses. Our findings suggest that N and P enrichment affect invertebrate community structure mainly by decreasing invertebrate abundance, and these effects are dependent on the habitat and trophic identity of the invertebrates. These results highlight the important effects of human‐driven nutrient enrichment on ecological systems and suggest a potential driver for the global invertebrate decline documented in recent years.
more »
« less
- Award ID(s):
- 1754326
- PAR ID:
- 10360149
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Biological Reviews
- Volume:
- 96
- Issue:
- 6
- ISSN:
- 1464-7931
- Format(s):
- Medium: X Size: p. 2617-2637
- Size(s):
- p. 2617-2637
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Anthropogenic increases in nitrogen (N) and phosphorus (P) concentrations can strongly influence the structure and function of ecosystems. Even though lotic ecosystems receive cumulative inputs of nutrients applied to and deposited on land, no comprehensive assessment has quantified nutrient‐enrichment effects within streams and rivers. We conducted a meta‐analysis of published studies that experimentally increased concentrations of N and/or P in streams and rivers to examine how enrichment alters ecosystem structure (state: primary producer and consumer biomass and abundance) and function (rate: primary production, leaf breakdown rates, metabolism) at multiple trophic levels (primary producer, microbial heterotroph, primary and secondary consumers, and integrated ecosystem). Our synthesis included 184 studies, 885 experiments, and 3497 biotic responses to nutrient enrichment. We documented widespread increases in organismal biomass and abundance (mean response = +48%) and rates of ecosystem processes (+54%) to enrichment across multiple trophic levels, with no large differences in responses among trophic levels or between autotrophic or heterotrophic food‐web pathways. Responses to nutrient enrichment varied with the nutrient added (N, P, or both) depending on rateversusstate variable and experiment type, and were greater in flume and whole‐stream experiments than in experiments using nutrient‐diffusing substrata. Generally, nutrient‐enrichment effects also increased with water temperature and light, and decreased under elevated ambient concentrations of inorganic N and/or P. Overall, increased concentrations of N and/or P altered multiple food‐web pathways and trophic levels in lotic ecosystems. Our results indicate that preservation or restoration of biodiversity and ecosystem functions of streams and rivers requires management of nutrient inputs and consideration of multiple trophic pathways.more » « less
-
Aim: Ongoing alterations to Earth’s biogeochemical cycles (e.g., via fertilization, burning of fossil fuels, and pollution) are expected to impact plants, plant consumers and all subsequent trophic levels. While fertilization experiments often reveal arthropod nutrient limitation by nitrogen and phosphorus via effects on plant nutrient density and biomass, these macronutrients are only two of many nutrients important to arthropod fitness. Micronutrients are key to osmoregulation and enzyme function and can interact synergistically with macronutrients to shape the geography of arthropod abundance. We examine arthropod response to macro- and micronutrient fertilization as a function of nutrient type, application amount, duration, frequency, and plant responses to fertilization with the goal of addressing how ongoing alterations to biogeochemical cycles will shape future grassland food webs.more » « less
-
Abstract Tidal freshwater marshes can protect downstream ecosystems from eutrophication by intercepting excess nutrient loads, but recent studies in salt marshes suggest nutrient loading compromises their structural and functional integrity. Here, we present data on changes in plant biomass, microbial biomass and activity, and soil chemistry from plots in a tidal freshwater marsh on the Altamaha River (GA) fertilized for 10 yr with nitrogen (+N), phosphorus (+P), or nitrogen and phosphorus (+NP). Nitrogen alone doubled aboveground biomass and enhanced microbial activity, specifically rates of potential nitrification, denitrification, and methane production measured in laboratory incubations. Phosphorus alone increased soil P and doubled microbial biomass but did not affect microbial processes. Nitrogen or P alone decreased belowground biomass and soil carbon (C) whereas +NP increased aboveground biomass, microbial biomass and N cycling, and N, P, and C assimilation and burial more than either nutrient alone. Our findings suggest differential nutrient limitation of tidal freshwater macrophytes by N and microbes by P, similar to what has been observed in salt marshes. Macrophytes outcompete microbes for P in response to long‐term N and P additions, leading to increased soil C storage through increased inputs of belowground biomass relative to N and P added singly. The susceptibility of tidal freshwater marshes to long‐term nutrient enrichment and, hence their ability to mitigate eutrophication will depend on the quantity and relative proportion of N vs. P entering estuaries and tidal wetlands.more » « less
-
Abstract Plant damage by invertebrate herbivores and pathogens influences the dynamics of grassland ecosystems, but anthropogenic changes in nitrogen and phosphorus availability can modify these relationships.Using a globally distributed experiment, we describe leaf damage on 153 plant taxa from 27 grasslands worldwide, under ambient conditions and with experimentally elevated nitrogen and phosphorus.Invertebrate damage significantly increased with nitrogen addition, especially in grasses and non‐leguminous forbs. Pathogen damage increased with nitrogen in grasses and legumes but not forbs. Effects of phosphorus were generally weaker. Damage was higher in grasslands with more precipitation, but climatic conditions did not change effects of nutrients on leaf damage. On average, invertebrate damage was relatively higher on legumes and pathogen damage was relatively higher on grasses. Community‐weighted mean damage reflected these functional group patterns, with no effects of N on community‐weighted pathogen damage (due to opposing responses of grasses and forbs) but stronger effects of N on community‐weighted invertebrate damage (due to consistent responses of grasses and forbs).Synthesis. As human‐induced inputs of nitrogen and phosphorus continue to increase, understanding their impacts on invertebrate and pathogen damage becomes increasingly important. Our results demonstrate that eutrophication frequently increases plant damage and that damage increases with precipitation across a wide array of grasslands. Invertebrate and pathogen damage in grasslands is likely to increase in the future, with potential consequences for plant, invertebrate and pathogen communities, as well as the transfer of energy and nutrients across trophic levels.more » « less
An official website of the United States government
