Abstract Adaptation to environmental change requires that populations harbor the necessary genetic variation to respond to selection. However, dispersal‐limited species with fragmented populations and reduced genetic diversity may lack this variation and are at an increased risk of local extinction. In freshwater fish species, environmental change in the form of increased stream temperatures places many cold‐water species at‐risk. We present a study of rainbow darters (Etheostoma caeruleum) in which we evaluated the importance of genetic variation on adaptive potential and determined responses to extreme thermal stress. We compared fine‐scale patterns of morphological and thermal tolerance differentiation across eight sites, including a unique lake habitat. We also inferred contemporary population structure using genomic data and characterized the relationship between individual genetic diversity and stress tolerance. We found site‐specific variation in thermal tolerance that generally matched local conditions and morphological differences associated with lake‐stream divergence. We detected patterns of population structure on a highly local spatial scale that could not be explained by isolation by distance or stream connectivity. Finally, we showed that individual thermal tolerance was positively correlated with genetic variation, suggesting that sites with increased genetic diversity may be better at tolerating novel stress. Our results highlight the importance of considering intraspecific variation in understanding population vulnerability and stress response.
more »
« less
Quantifying nonlinear temporal effects of ethanol preservation on round goby ( Neogobius melanostomus ) anatomical traits
Abstract Geometric morphometrics provides a powerful means of evaluating differences in phenotypic traits among specimens. However, inferences of trait variability can be confounded when measurements are based on preserved samples. We evaluated effects of ethanol preservation on morphology over a 22‐week time period for a Laurentian Great Lakes invasive fish, round goby (Neogobius melanostomus, Pallas 1814),using sets of 17 lateral and six dorsal landmarks. We tested whether ethanol preservation affected the magnitude of inter‐population variation between individuals collected from lake and river habitats. Generalized least square regression determined that length did not significantly vary through the preservation time series for fish from either population, while mass decreased significantly. Body shape variation was summarized using principal component analysis, which revealed that most preservation‐associated changes occurred in the first 14 days. The lateral shape experienced a large magnitude change during the first 24 h in ethanol then only minor changes for the remainder of the study. The dorsal shape began to revert to pre‐preservation measurements about 14 days following preservation. Additionally, differences in shape were apparent between the two populations throughout the experiment; however, the magnitude of differences between populations varied depending on whether dorsal or lateral landmarks were considered. Our study demonstrates that tissue responses to ethanol preservation can be more complex than a simple loss of mass, resulting in difficult to predict consequences for geometric morphometric analyses, including variable responses depending on the anatomical region being analyzed.
more »
« less
- Award ID(s):
- 1811821
- PAR ID:
- 10360284
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Morphology
- Volume:
- 282
- Issue:
- 12
- ISSN:
- 0362-2525
- Page Range / eLocation ID:
- p. 1772-1784
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Early life behaviors have a profound role in shaping adult craniofacial morphology. During early life, all mammals undergo the dynamic transition from suckling to mastication, a period coinciding with rapid cranial biomineralization. Osteogenesis imperfecta (OI), a genetic disorder that impacts the production of type I collagen, disrupts biomineralization, leading to craniofacial growth differences affecting quality of life. This study investigates craniofacial development during infant oral motor developmental stages in OI mice compared to unaffected wild‐type littermates (WT mice). We hypothesize OI mice will exhibit smaller overall size, and the adult OI phenotype will develop postnatally in response to masticatory loading. Point cloud and fixed landmarks were collected from micro‐computed tomography scans, then geometric morphometric analyses and interlandmark distances (ILDs) compared craniofacial size and shape between OI and WT mice at birth (P0;n = 27 OI murine/20 WT) and postnatal Days 7 (P7;n = 21/21), 14 (P14;n = 16/20), 21 (P21;n = 20/26), and 28 (P28;n = 26/33). This study found no size and shape differences between genotypes at birth. Starting at P7, OI mice are significantly (p < 0.05) smaller and display pronounced shape changes (p < 0.001) characterized by a larger neurocranium and a shorter viscerocranium. At P21, significant differences emerge in cranial base orientation, neurocranial width, viscerocranial shortening, and zygomatic arch displacement. These findings underscore the importance of early life oral motor stages in developing the adult OI craniofacial phenotype and oral health, suggesting earlier craniofacial interventions may improve effective treatment of OI.more » « less
-
Abstract Maternal provisioning and the developmental environment are fundamental determinants of offspring traits, particularly in oviparous species. However, the extent to which embryonic responses to these factors differ across populations to drive phenotypic variation is not well understood. Here, we examine the contributions of maternal provisioning and incubation temperature to hatchling morphological and metabolic traits across four populations of the American alligator (Alligator mississippiensis), encompassing a large portion of the species' latitudinal range. Our results show that whereas the influence of egg mass is generally consistent across populations, responses to incubation temperature show population‐level variation in several traits, including mass, head length, head width, and residual yolk mass. Additionally, the influence of incubation temperature on developmental rate is greater at northern populations, while the allocation of maternal resources toward fat body mass is greater at southern populations. Overall, our results suggest that responses to incubation temperature, relative to maternal provisioning, are a larger source of interpopulation phenotypic variation and may contribute to the local adaptation of populations.more » « less
-
Population divergence is often quantified using phenotypic variation. However, because sensory abilities are more difficult to discern, we have little information on the plasticity and rate of sensory change between different environments. The Mexican tetra (Astyanax mexicanus) is a fish distributed throughout Southern Texas and Northern Mexico and has evolved troglomorphic phenotypes, such as vestigial eyes and reduced pigmentation, when surface ancestors invaded caves in the past several hundred thousand years. In the early 1900s, surfaceA. mexicanuswere introduced to the karstic Edwards-Trinity Aquifer in Texas. Subsequent cave colonization of subterranean environments resulted in fish with phenotypic and behavioral divergence from their surface counterparts, allowing examination of how new environments lead to sensory changes. We hypothesized that recently introduced cave populations would be more sensitive to light and sound when compared to their surface counterparts. We quantified divergence using auditory evoked potentials (AEPs) and particle acceleration levels (PALs) to measure differences in sound sensitivity, and electroretinography (ERGs) to measure light sensitivity. We also compared these results to measurements taken from native populations and lab-born individuals of the introduced populations. Honey Creek Cave fish were significantly more sensitive than proximate Honey Creek surface fish to sound pressure levels between 0.6 and 0.8 kHz and particle acceleration levels between 0.4 and 0.8 kHz. Pairwise differences were found between San Antonio Zoo surface and the facultative subterranean San Pedro Springs and Blue Hole populations, which exhibited more sensitivity to particle acceleration levels between 0.5 and 0.7 kHz. Electroretinography results indicate no significant differences between populations, although Honey Creek Cave fish may be trending toward reduced visual sensitivity. Auditory thresholds between wild-caught and lab-raised populations of recently invaded fish show significant differences in sensitivity, suggesting that these traits are plastic. Collectively, while these results may point to the rapid divergence ofA. mexicanusin cave habitats, it also highlights the responsive plasticity ofA. mexicanusauditory system to disparate environments.more » « less
-
The vertebrate brain is highly conserved topologically, but less is known about neuroanatomical variation between individual brain regions. Neuroanatomical variation at the regional level is hypothesized to provide functional expansion, building upon ancestral anatomy needed for basic functions. Classically, animal models used to study evolution have lacked tools for detailed anatomical analysis that are widely used in zebrafish and mice, presenting a barrier to studying brain evolution at fine scales. In this study, we sought to investigate the evolution of brain anatomy using a single species of fish consisting of divergent surface and cave morphs, that permits functional genetic testing of regional volume and shape across the entire brain. We generated a high-resolution brain atlas for the blind Mexican cavefishAstyanax mexicanusand coupled the atlas with automated computational tools to directly assess variability in brain region shape and volume across all populations. We measured the volume and shape of every grossly defined neuroanatomical region of the brain and assessed correlations between anatomical regions in surface fish, cavefish, and surface × cave F2hybrids, whose phenotypes span the range of surface to cave. We find that dorsal regions of the brain are contracted, while ventral regions have expanded, with F2hybrid data providing support for developmental constraint along the dorsal-ventral axis. Furthermore, these dorsal-ventral relationships in anatomical variation show similar patterns for both volume and shape, suggesting that the anatomical evolution captured by these two parameters could be driven by similar developmental mechanisms. Together, these data demonstrate thatA. mexicanusis a powerful system for functionally determining basic principles of brain evolution and will permit testing how genes influence early patterning events to drive brain-wide anatomical evolution.more » « less