In current infrastructure-as-a service (IaaS) cloud services, customers are charged for the usage of computing/storage resources only, but not the network resource. The difficulty lies in the fact that it is nontrivial to allocate network resource to individual customers effectively, especially for short-lived flows, in terms of both performance and cost, due to highly dynamic environments by flows generated by all customers. To tackle this challenge, in this paper, we propose an end-to-end Price-Aware Congestion Control Protocol (PACCP) for cloud services. PACCP is a network utility maximization (NUM) based optimal congestion control protocol. It supports three different classes of services (CoSes), i.e., best effort service (BE), differentiated service (DS), and minimum rate guaranteed (MRG) service. In PACCP, the desired CoS or rate allocation for a given flow is enabled by properly setting a pair of control parameters, i.e., a minimum guaranteed rate and a utility weight, which in turn, determines the price paid by the user of the flow. Two pricing models, i.e., a coarse-grained VM-Based Pricing model (VBP) and a fine-grained Flow-Based Pricing model (FBP), are proposed. The optimality of PACCP is verified by both large scale simulation and small testbed implementation. The price-performance consistency of PACCP are evaluated using real datacenter workloads. The results demonstrate that PACCP provides minimum rate guarantee, high bandwidth utilization and fair rate allocation, commensurate with the pricing models.
more » « less- Award ID(s):
- 2008835
- NSF-PAR ID:
- 10360309
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Journal of Cloud Computing
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2192-113X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We consider a fundamental pricing model in which a fixed number of units of a reusable resource are used to serve customers. Customers arrive to the system according to a stochastic process and, upon arrival, decide whether to purchase the service, depending on their willingness to pay and the current price. The service time during which the resource is used by the customer is stochastic, and the firm may incur a service cost. This model represents various markets for reusable resources, such as cloud computing, shared vehicles, rotable parts, and hotel rooms. In the present paper, we analyze this pricing problem when the firm attempts to maximize a weighted combination of three central metrics: profit, market share, and service level. Under Poisson arrivals, exponential service times, and standard assumptions on the willingness-to-pay distribution, we establish a series of results that characterize the performance of static pricing in such environments. In particular, although an optimal policy is fully dynamic in such a context, we prove that a static pricing policy simultaneously guarantees 78.9% of the profit, market share, and service level from the optimal policy. Notably, this result holds for any service rate and number of units the firm operates. Our proof technique relies on a judicious construction of a static price that is derived directly from the optimal dynamic pricing policy. In the special case in which there are two units and the induced demand is linear, we also prove that the static policy guarantees 95.5% of the profit from the optimal policy. Our numerical findings on a large test bed of instances suggest that the latter result is quite indicative of the profit obtained by the static pricing policy across all parameters.more » « less
-
Abstract We study optimal pricing for tandem queueing systems with finite buffers. The service provider dynamically quotes prices to incoming price sensitive customers to maximize the long‐run average revenue. We present a Markov decision process model for the optimization problem. For systems with two stations, general‐sized buffers, and two or more prices, we describe the structure of the optimal dynamic pricing policy and develop tailored policy iteration algorithms to find an optimal pricing policy. For systems with two stations but no intermediate buffer, we characterize conditions under which quoting either a high or a low price to all customers is optimal and provide an easy‐to‐implement algorithm to solve the problem. Numerical experiments are conducted to compare the developed algorithms with the regular policy iteration algorithm. The work also discusses possible extensions of the obtained results to both three‐station systems and two‐station systems with price and congestion sensitive customers using numerical analysis.
-
The confluence of advanced networking (5G/6G) and distributed cloud technologies (edge/fog computing) are rapidly transforming next-generation networks into highly distributed computation platforms, especially suited to host emerging resource-intensive and latency-sensitive services (e.g., smart transportation/city/factory, real-time computer vision, augmented reality). In this paper, we leverage the recently proposed Cloud Network Flow (CNF) modeling and optimization framework to design a novel two-timescale orchestration system for the joint control of communication and computation resources in cloud-integrated networks. The Long-Term Controller solves a properly constructed CNF optimization problem at a longer timescale that determines i) the end-to-end CNF routes (defining data paths and processing locations) for each service chain and ii) the associated allocation of communication and computation resources. The Short-Term Controller uses a local control policy to adjust the allocation of communication and computation resources based on queue state observations at a shorter timescale. Driven by the lack of proper simulation tools, we also develop new ns-3 features that allow modeling and simulation of cloud-integrated networks equipped with both communication and computation resources hosting arbitrary service chains. Finally, we integrate the proposed orchestration system into ns-3 to evaluate and analyze the dynamic orchestration of a set of representative service chains over a hierarchical cloud-integrated network.more » « less
-
Despite years of research on transport protocols, the tussle between in-network and end-to-end congestion control has not been solved. This debate is due to the variance of conditions and assumptions in different network scenarios, e.g., cellular versus data center networks. Recently, the community has proposed a few transport protocols driven by machine learning, nonetheless limited to end-to-end approaches. In this paper, we present Owl, a transport protocol based on reinforcement learning, whose goal is to select the proper congestion window learning from end-to-end features and network signals, when available. We show that our solution converges to a fair resource allocation after the learning overhead. Our kernel implementation, deployed over emulated and large scale virtual network testbeds, outperforms all benchmark solutions based on end-to-end or in-network congestion control.more » « less
-
In the context of subscription-based services, many technologies improve over time, and service providers can provide increasingly powerful service upgrades to their customers but at a launching cost and the expense of the sales of existing products. We propose a model of technology upgrades and characterize the optimal pricing and timing of technology introductions for a service provider who price-discriminates among customers based on their upgrade experience in the face of customers who are averse to switching to improved offerings. We first characterize optimal discriminatory pricing for the infinite horizon pricing problem with fixed introduction times. We reduce the optimal pricing problem to a tractable optimization problem and propose an efficient algorithm for solving it. Our algorithm computes optimal discriminatory prices within a fraction of a second even for large problem instances. We then show that periodic introduction times, combined with optimal pricing, enjoy optimality guarantees. In particular, we first show that, as long as the introduction intervals are constrained to be nonincreasing, it is optimal to have periodic introductions after an initial warm-up phase. When allowing general introduction intervals, we show that periodic introduction intervals after some time are optimal in a more restricted sense. Numerical experiments suggest that it is generally optimal to have periodic introductions after an initial warm-up phase. Finally, we focus on a setting in which the firm does not price-discriminate based on customers’ experience. We show both analytically and numerically that in the nondiscriminatory setting, a simple policy of Myerson (i.e., myopic) pricing and periodic introductions enjoys good performance guarantees. Funding: This material is based upon work supported by INSEAD and University Pierre et Marie Curie [Grant ELICIT], as well as by the National Science Foundation [Grant 2110707]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2022.2364 .more » « less