- Award ID(s):
- 1633608
- Publication Date:
- NSF-PAR ID:
- 10341179
- Journal Name:
- Thesis for Clemson University
- Sponsoring Org:
- National Science Foundation
More Like this
-
Critical infrastructure networks, including water, power, communication, and transportation, among others, are necessary to society’s functionality. In recent years, the threat of different types of disruptions to such infrastructure networks has become an increasingly important problem to address. Due to existing interdependencies, damage to a small area of one of the networks could have far-reaching effects on the ability to meet demand across the entire system. Common disruption scenarios include, among others, intentional malevolent attacks, natural disasters, and random failures. Similar works have focused on only one type of scenario, but combining a variety of disruptions may lead to more realistic results. Additionally, the concept of social vulnerability, which describes an area’s ability to prepare for and respond to a disruption, must be included. This should promote not only the protection of the most at-risk components but also ensure that socially vulnerable communities are given adequate resources. This work provides a decision making framework to determine the allocation of defensive resources that accounts for all these factors. Accordingly, we propose a multi-objective mathematical model with the objectives of: (i) minimizing the vulnerability of a system of interdependent infrastructure networks, and (ii) minimizing the total cost of the resource allocation strategy.more »
-
In this work, we propose to utilize discrete graph Ricci flow to alter network entropy through feedback control. Given such feedback input can “reverse” entropic changes, we adapt the moniker of Maxwell’s Demon to motivate our approach. In particular, it has been recently shown that Ricci curvature from geometry is intrinsically connected to Boltzmann entropy as well as functional robustness of networks or the ability to maintain functionality in the presence of random fluctuations. From this, the discrete Ricci flow provides a natural avenue to “rewire” a particular network’s underlying geometry to improve throughout and resilience. Due to the real-world setting for which one may be interested in imposing nonlinear constraints amongst particular agents to understand the network dynamic evolution, controlling discrete Ricci flow may be necessary (e.g., we may seek to understand the entropic dynamics and curvature “flow” between two networks as opposed to solely curvature shrinkage). In turn, this can be formulated as a natural control problem for which we employ feedback control towards discrete Ricci-based flow and show that under certain discretization, namely Ollivier-Ricci curvature, one can show stability via Lyapunov analysis. We conclude with preliminary results with remarks on potential applications that will be a subjectmore »
-
Abstract The negative impact of climate change continues to escalate flood risk. Floods directly and indirectly damage highway systems and disturb the socioeconomic order. In this study, we propose an integrated approach to quantitatively assess how floods impact the functioning of a highway system. The approach has three parts: (1) a multi‐agent simulation model to represent traffic, heterogeneous user demand, and route choice in a highway network; (2) a flood simulator using future runoff scenarios generated from five global climate models, three representative concentration pathways (RCPs), and the CaMa‐Flood model; and (3) an impact analyzer, which superimposes the simulated floods on the highway traffic simulation system, and quantifies the flood impact on a highway system based on car following model. This approach is illustrated with a case study of the Chinese highway network. The results show that (i) for different global climate models, the associated flood damage to a highway system is not linearly correlated with the forcing levels of RCPs, or with future years; (ii) floods in different years have variable impacts on regional connectivity; and (iii) extreme flood impacts can cause huge damages in highway networks; that is, in 2030, the estimated 84.5% of routes between provinces cannotmore »
-
Urban heat exposure is an increasing health risk among urban dwellers. Many cities are considering accommodating active mobility, especially walking and biking, to reduce greenhouse gas emissions. However, promoting active mobility without proper planning and transportation infrastructure to combat extreme heat exposure may cause more heat-related morbidity and mortality, particularly in future with projected climate change. This study estimated the effectiveness of active trip heat exposure mitigation under built environment and travel behavior change. Simulations of the Phoenix metro region's 624,987 active trips were conducted using the activity-based travel model (ABM), mean radiant temperature (T MRT , net human radiation exposure), transportation network, and local climate zones. Two scenarios were designed to reduce traveler exposure: one that focuses on built environment change (making neighborhoods cooler) and the other on travel behavior (switching from shorter travel time but higher exposure routes to longer travel time but cooler routes) change. Travelers experienced T MRT heat exposure ranging from 29°C to 76°C (84°F to 168°F) without environmental or behavioral change. Active trip T MRT exposures were reduced by an average of 1.2–3.7°C when the built environment was changed from a hotter to cooler design. Behavioral changes cooled up to 10 times more tripsmore »
-
ABSTRACT The presented methodology results in an optimal portfolio of resilience‐oriented resource allocation under weather‐related risks. The pre‐event mitigations improve the capacity of the transportation system to absorb shocks from future natural hazards, contributing to risk reduction. The post‐event recovery planning results in enhancing the system's ability to bounce back rapidly, promoting network resilience. Considering the complex nature of the problem due to uncertainty of hazards, and the impact of the pre‐event decisions on post‐event planning, this study formulates a nonlinear two‐stage stochastic programming (NTSSP) model, with the objective of minimizing the direct construction investment and indirect costs in both pre‐event mitigation and post‐event recovery stages. In the model, the first stage prioritizes a bridge group that will be retrofitted or repaired to improve the system's robustness and redundancy. The second stage elaborates the uncertain occurrence of a type of natural hazard with any potential intensity at any possible network location. The damaged state of the network is dependent on decisions made on first‐stage mitigation efforts. While there has been research addressing the optimization of pre‐event or post‐event efforts, the number of studies addressing two stages in the same framework is limited. Even such studies are limited in their applicationmore »