Abstract Two-dimensional carbides and nitrides, known as MXenes, are promising for water-processable coatings due to their excellent electrical, thermal, and optical properties. However, depositing hydrophilic MXene nanosheets onto inert or hydrophobic polymer surfaces requires plasma treatment or chemical modification. This study demonstrates a universal salt-assisted assembly method that produces ultra-thin, uniform MXene coatings with exceptional mechanical stability and washability on various polymers, including high-performance polymers for extreme temperatures. The salt in the Ti3C2Txcolloidal suspension reduces surface charges, enabling electrostatically hydrophobized MXene deposition on polymers. A library of salts was used to optimize assembly kinetics and coating morphology. A 170 nm MXene coating can reduce radiation temperature by ~200 °C on a 300 °C PEEK substrate, while the coating on Kevlar fabric provides comfort in extreme conditions, including outer space and polar regions.
more »
« less
Boron‐Nitrogen Lewis Pairs in the Assembly of Supramolecular Macrocycles, Molecular Cages, Polymers, and 3D Materials
Abstract Covering an exceptionally wide range of bond strengths, the dynamic nature and facile tunability of dative B−N bonds is highly attractive when it comes to the assembly of supramolecular polymers and materials. This Minireview offers an overview of advances in the development of functional materials where Lewis pairs (LPs) play a key role in their assembly and critically influence their properties. Specifically, we describe the reversible assembly of linear polymers with interesting optical, electronic and catalytic properties, discrete macrocycles and molecular cages that take up diverse guest molecules and undergo structural changes triggered by external stimuli, covalent organic frameworks (COFs) with intriguing interlocked structures that can embed and separate gases such as CO2and acetylene, and soft polymer networks that serve as recyclable, self‐healing, and responsive thermosets, gels and elastomeric materials.
more »
« less
- Award ID(s):
- 1904791
- PAR ID:
- 10485808
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 63
- Issue:
- 3
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Peptide–polymer amphiphiles (PPAs) are tunable hybrid materials that achieve complex assembly landscapes by combining the sequence‐dependent properties of peptides with the structural diversity of polymers. Despite their promise as biomimetic materials, determining how polymer and peptide properties simultaneously affect PPA self‐assembly remains challenging. We herein present a systematic study of PPA structure–assembly relationships. PPAs containing oligo(ethyl acrylate) and random‐coil peptides were used to determine the role of oligomer molecular weight, dispersity, peptide length, and charge density on self‐assembly. We observed that PPAs predominantly formed spheres rather than anisotropic particles. Oligomer molecular weight and peptide hydrophilicity dictated morphology, while dispersity and peptide charge affected particle size. These key benchmarks will facilitate the rational design of PPAs that expand the scope of biomimetic functionality within assembled soft materials.more » « less
-
Abstract Inspired by protein polymerizations, much progress has been made in making “polymer‐like” supramolecular structures from small synthetic subunits through non‐covalent bonds. A few regulation mechanisms have also been explored in synthetic platforms to create supramolecular polymers and materials with dynamic properties. Herein, a type of reactive regulator that facilitates the dimerization of the monomer precursors through dynamic bonds to trigger the supramolecular assembly from small molecules in an aqueous solution is described. The supramolecular structures are crystalline in nature and the reaction coupled assembly strategy can be extended to a supramolecular assembly of aromatic amide derivatives formed in‐situ. The method may be instructive for the development of supramolecular nanocrystalline materials with desired physical properties.more » « less
-
Abstract Over the last two decades, polymers with superior H2/CO2separation properties at 100–300 °C have gathered significant interest for H2purification and CO2capture. This timely review presents various strategies adopted to molecularly engineer polymers for this application. We first elucidate the Robeson's upper bound at elevated temperatures for H2/CO2separation and the advantages of high‐temperature operation (such as improved solubility selectivity and absence of CO2plasticization), compared with conventional membrane gas separations at ~35 °C. Second, we describe commercially relevant membranes for the separation and highlight materials with free volumes tuned to discriminate H2and CO2, including functional polymers (such as polybenzimidazole) and engineered polymers by cross‐linking, blending, thermal treatment, thermal rearrangement, and carbonization. Third, we succinctly discuss mixed matrix materials containing size‐sieving or H2‐sorptive nanofillers with attractive H2/CO2separation properties.more » « less
-
Abstract Synthesizing soft polymers with uncommon architectural elements is critical for enhancing our understanding of fundamental structure–property relationships in macromolecules. Terpenoid materials are interesting candidates for addressing this grand challenge, as their constituent monomers can exhibit a diverse array of structural and functional groups. Moreover, these biologically‐derived materials can potentially expand the sphere of knowledge surrounding trends in related petrochemically‐derived polymers. For example, vinyl‐addition copolymers of norbornene and acyclic olefins can exhibit predictable properties (e.g., linear changes inTgas a function of composition). Due to synthetic limitations, however, it is not well understood if other rigid carbocycles engender similar behavior in a range of copolymers. As numerous terpene scaffolds display rigid motifs (such as pinane systems), terpenoid polymers are uniquely positioned to address this deficiency. Here, we report the synthesis and characterization of terpenoid copolymers (both statistical and block) with systematically tailored compositions of pinene‐based comonomers. We found that the pinane core (which is a constitutional isomer of norbornene) appears to promote ideal behavior with regard to bulk thermal properties of statistical copolymers, which mirrors the behavior of norbornene‐based systems. We also found that block copolymers exhibited thermomechanical properties that were highly tunable (and apparently correlated to carbocycle composition).more » « less
An official website of the United States government
