skip to main content


Title: Recent changes to Arctic river discharge
Abstract

Arctic rivers drain ~15% of the global land surface and significantly influence local communities and economies, freshwater and marine ecosystems, and global climate. However, trusted and public knowledge of pan-Arctic rivers is inadequate, especially for small rivers and across Eurasia, inhibiting understanding of the Arctic response to climate change. Here, we calculate daily streamflow in 486,493 pan-Arctic river reaches from 1984-2018 by assimilating 9.18 million river discharge estimates made from 155,710 satellite images into hydrologic model simulations. We reveal larger and more heterogenous total water export (3-17% greater) and water export acceleration (factor of 1.2-3.3 larger) than previously reported, with substantial differences across basins, ecoregions, stream orders, human regulation, and permafrost regimes. We also find significant changes in the spring freshet and summer stream intermittency. Ultimately, our results represent an updated, publicly available, and more accurate daily understanding of Arctic rivers uniquely enabled by recent advances in hydrologic modeling and remote sensing.

 
more » « less
Award ID(s):
1748653
NSF-PAR ID:
10360485
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Climate change is intensifying the Arctic hydrologic cycle, potentially accelerating the release of carbon and nutrients from permafrost landscapes to rivers. However, there are limited riverine flow and solute data of adequate frequency and duration to test how seasonality and catchment landscape characteristics influence production and transport of carbon and nutrients in Arctic river networks. We measured high frequency hydrochemical dynamics at the outlets of three headwater catchments in Arctic Alaska over 3 years. The catchments represent common Arctic landscapes: low‐gradient tundra, low‐gradient and lake‐influenced tundra, and high‐gradient alpine tundra. Using in‐situ spectrophotometers, we measured dissolved organic carbon (DOC) and nitrate (NO3) concentrations at 15‐min intervals through the flow seasons of 2017, 2018, and 2019. These high‐frequency data allowed us to quantify concentration–discharge (C‐Q) responses during individual storm events across the flow season. Differences in C‐Q responses among catchments indicated strong landscape and seasonal controls on lateral DOC and NO3flux. For the two low‐gradient tundra catchments, we observed consistent DOC enrichment (transport‐limitation) and NO3dilution (source‐limitation) during flow events. Conversely, we found consistent NO3enrichment and DOC dilution in the high‐gradient alpine catchment. Our analysis revealed how high flow events may contribute disproportionately to downstream export in these Arctic streams. Because the duration of the flow season is expected to lengthen and the intensity of Arctic storms are expected to increase, understanding how discharge and solute concentration are coupled is crucial to understanding carbon and nutrient dynamics in rapidly changing permafrost ecosystems.

     
    more » « less
  2. Abstract

    The evasion of CO2from inland waters, a major carbon source to the atmosphere, depends on dissolved inorganic carbon (DIC) concentrations. Our understanding of DIC dynamics across gradients of climate, geology, and vegetation conditions however have remained elusive. To understand its large‐scale patterns and drivers, we collated instantaneous and mean (multiyear average) DIC concentrations from about 100 rivers draining minimally‐impacted watersheds in the contiguous United States. Within individual sites, instantaneous concentrations (C) measured at daily to seasonal scales exhibit a near‐universal response to changes in river discharge (Q) in a negative power law form. High concentrations occur at low discharge when DIC‐enriched groundwater dominates river discharge; low concentrations occur under high flow when relatively DIC‐poor shallow soil water predominates river discharge. Such patterns echo the widely observed increase of soil CO2and DIC with depth and the shallow‐and‐deep hypothesis that emphasizes the importance of flow paths and source water chemistry. Across sites, mean concentrations (Cm) decrease with increasing mean discharge (Qm), a long‐term climate measure, and reachs maxima at around 200 mm/yr. A parsimonious model reveals that high mean DIC arises from soil CO2accumulation when rates of DIC‐generating reactions are relatively high compared to its export fluxes in arid climates. Although instantaneous and mean DIC concentrations similarly decrease with increasing discharge, results here highlight their distinct drivers: daily to seasonal‐scale instantaneous concentration variations (C) are controlled by subsurface CO2distribution over depth (from below), whereas long‐term mean concentrations (Cm) are regulated by climate (from above). The results emphasize the significance of land‐river connectivity via subsurface flow paths. They also underscore the importance of characterizing subsurface CO2distribution to illuminate belowground processes in order to project the future of water and carbon cycles in a warming climate.

     
    more » « less
  3. Abstract

    Habitat fragmentation drives biodiversity loss in rivers around the world. Although the effects of anthropogenic barriers on river connectivity are well known, there has been little research on the ways in which stream drying may alter connections among habitats and resources. Given that stream drying is increasing in many regions, there is a pressing need to understand the effects of drying on habitat fragmentation. Here, we quantify spatiotemporal drying patterns under current and future climate scenarios in the Upper Blue River Basin, Oklahoma. We used a hydrologic model to simulate daily streamflow for nine climate scenarios. For each scenario, we calculated metrics of streamflow temporal continuity (dry days, dry periods, and dry period duration) and spatial connectivity (wetted length, number of dry stream fragments, length of dry stream fragments, and dendritic connectivity index) from simulated daily streamflow. We found that stream drying is likely to increase in all future climate scenarios and that increases in stream drying reduce connectivity. However, the effects of stream drying on connectivity were highly nonlinear. Specifically, we observed a threshold around which a small increase in stream drying led to a rapid drop in connectivity. We also found that the greatest increases in stream drying were not associated with the highest emission scenarios, underscoring the complex linkages among climate, water availability, and connectivity. Given that connectivity is essential to ecosystem structure and function, we discuss water management strategies informed by impacts of stream drying.

     
    more » « less
  4. Abstract

    Aquatic fluxes of carbon and nutrients link terrestrial and aquatic ecosystems. Within forests, storm events drive both the delivery of carbon and nitrogen to the forest floor and the export of these solutes from the land via streams. To increase understanding of the relationships between hydrologic event character and the relative fluxes of carbon and nitrogen in throughfall, stemflow and streams, we measured dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) concentrations in each flow path for 23 events in a forested watershed in Vermont, USA. DOC and TDN concentrations increased with streamflow, indicating their export was limited by water transport of catchment stores. DOC and TDN concentrations in throughfall and stemflow decreased exponentially with increasing precipitation, suggesting that precipitation removed a portion of available sources from tree surfaces during the events. DOC and TDN fluxes were estimated for 76 events across a 2‐year period. For most events, throughfall and stemflow fluxes greatly exceeded stream fluxes, but the imbalance narrowed for larger storms (>30 mm). The largest 10 stream events exported 40% of all stream event DOC whereas those same 10 events contributed 14% of all throughfall export. Approximately 2–5 times more DOC and TDN was exported from trees during rain events than left the catchment via streams annually. The diverging influence of event size on tree versus stream fluxes has important implications for forested ecosystems as hydrological events increase in intensity and frequency due to climate change.

     
    more » « less
  5. Abstract

    The flow regime paradigm is central to the aquatic sciences, where flow drives critical functions in lotic systems. Non‐perennial streams comprise the majority of global river length, thus we extended this paradigm to stream drying. Using 894 USGS gages, we isolated 25,207 drying events from 1979 to 2018, represented by a streamflow peak followed by no flow. We calculated hydrologic signatures for each drying event and using multivariate statistics, grouped events into drying regimes characterized by: (a) fast drying, (b) long no‐flow duration, (c) prolonged drying following low antecedent flows, (d) drying without a distinctive hydrologic signature. 77% of gages had more than one drying regime at different times within the study period. Random forests revealed land cover/use are more important to how a river dries than climate or physiographic characteristics. Clustering stream drying behavior may allow practitioners to more systematically adapt water resource management practices to specific drying regimes or rivers.

     
    more » « less