skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A chip-less and battery-less subharmonic tag for wireless sensing with parametrically enhanced sensitivity and dynamic range
Abstract Massive deployments of wireless sensor nodes (WSNs) that continuously detect physical, biological or chemical parameters are needed to truly benefit from the unprecedented possibilities opened by the Internet-of-Things (IoT). Just recently, new sensors with higher sensitivities have been demonstrated by leveraging advanced on-chip designs and microfabrication processes. Yet, WSNs using such sensors require energy to transmit the sensed information. Consequently, they either contain batteries that need to be periodically replaced or energy harvesting circuits whose low efficiencies prevent a frequent and continuous sensing and impact the maximum range of communication. Here, we report a new chip-less and battery-less tag-based WSN that fundamentally breaks any previous paradigm. This WSN, formed by off-the-shelf lumped components on a printed substrate, can sense and transmit information without any need of supplied or harvested DC power, while enabling full-duplex transceiver designs for interrogating nodes rendering them immune to their own self-interference. Also, even though the reported WSN does not require any advanced and expensive manufacturing, its unique parametric dynamical behavior enables extraordinary sensitivities and dynamic ranges that can even surpass those achieved by on-chip sensors. The operation and performance of the first implementation of this new WSN are reported. This device operates in the Ultra-High-Frequency range and is capable to passively and continuously detect temperature changes remotely from an interrogating node.  more » « less
Award ID(s):
1854573
PAR ID:
10360513
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wireless sensor nodes (WSNs) are useful to monitor animals remotely and continuously. The proposed WSN aims to monitor pig activities, and it consists of a 3-axis accelerometer, a 3-axis gyroscope, and a microcontroller with embedded BLE (Bluetooth Low Energy) radio. The WSN was designed and prototyped with a custom PCB and used to collect data from pigs in field for about 131 hours, and the collected data was processed to classify pig behaviors with machine learning models. The sampling rate of the sensors is 10 samples per second. The proposed WSN dissipates 6.29 mW, on average, and the peak power dissipation is 41.01 mW during transmission of the sensed data. The WSN is estimated to operate for about three weeks with a coin cell battery CR2477. 
    more » « less
  2. Abstract (WSN) using encrypted non-binary quantized data is studied. In a WSN, sensors transmit their observations to a fusion center through a wireless medium where the observations are susceptible to unauthorized eavesdropping. Encryption approaches for WSNs with fixed threshold binary quantization were previously explored. However, fixed threshold binary quantization limits parameter estimation to scalar parameters. In this paper, we propose a stochastic encryption approach for WSNs that can operate on non-binary quantized observations and has the capability for vector parameter estimation. We extend a binary stochastic encryption approach proposed previously, to a nonbinary generalized case. Sensor outputs are quantized using a quantizer with R + 1 levels, where R in {1.2. 3 ...}, encrypted by flipping them with certain flipping probabilities, and then transmitted. Optimal estimators using maximum-likelihood estimation are derived for both a legitimate fusion center (LFC) and a third party fusion center (TPFC) perspectives. We assume the TPFC is unaware of the encryption. Asymptotic analysis of the estimators is performed by deriving the Cramer-Rao lower bound for LFC estimation, and the asymptotic bias and variance for TPFC estimation. Numerical results validating the asymptotic analysis are presented. 
    more » « less
  3. Wireless Sensor Network (WSN) becomes the dominate last-mile connection to cyber-physical systems and Internet-of-Things. However, WSN opens new attack surfaces such as black holes, where sensing information gets lost during relay towards base stations. Current defense mechanisms against black hole attacks require substantial energy consumption, reducing the system's lifetime. This paper proposes a novel approach to detect and recover from black hole attacks using an improved version of Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol. LEACH is an energy-efficient routing protocol for groups of battery-operated sensor nodes in hierarchy. A round of selection for cluster heads is scheduled in a set time. We propose to improve LEACH with Anomaly Report Cycling (ARC-LEACH), tradeoff between security strength and energy cost. ARC-LEACH absorbs an attack when it occurs by rotating cluster heads to reestablish communication and then sending a message from the base station to coordinate all nodes against the malicious nodes. ARC-LEACH actively blocks malicious nodes while leveraging the resilience of LEACH for stronger resistance to blackhole attacks. ARC-LEACH can provide more defense capability when under attack from multiple malicious nodes that would otherwise be defenseless by LEACH, with only minor increase in energy consumption. 
    more » « less
  4. null (Ed.)
    The exponential growth of IoT end devices creates the necessity for cost-effective solutions to further increase the capacity of IEEE802.15.4g-based wireless sensor networks (WSNs). For this reason, the authors present a wireless sensor network concentrator (WSNC) that integrates multiple collocated collectors, each of them hosting an independent WSN on a unique frequency channel. A load balancing algorithm is implemented at the WSNC to uniformly distribute the number of aggregated sensor nodes across the available collectors. The WSNC is implemented using a BeagleBone board acting as the Network Concentrator (NC) whereas collectors and sensor nodes realizing the WSNs are built using the TI CC13X0 LaunchPads. The system is assessed using a testbed consisting of one NC with up to four collocated collectors and fifty sensor nodes. The performance evaluation is carried out under race conditions in the WSNs to emulate high dense networks with different network sizes and channel gaps. The experimental results show that the multicollector system with load balancing proportionally scales the capacity of the network, increases the packet delivery ratio, and reduces the energy consumption of the IoT end devices. 
    more » « less
  5. Abstract The water supply network (WSN) is subjected to leaks that compromise its service to the communities, which, however, is challenging to identify with conventional approaches before the consequences surface. This study developed Machine Learning (ML) models to detect leaks in the WDN. Water pressure data under leaking versus non-leaking conditions were generated with holistic WSN simulation code EPANET considering factors such as the fluctuating user demands, data noise, and the extent of leaks, etc. The results indicate that Artificial Neural Network (ANN), a supervised ML model, can accurately classify leaking versus non-leaking conditions; it, however, requires balanced dataset under both leaking and non-leaking conditions, which is difficult for a real WSN that mostly operate under normal service condition. Autoencoder neural network (AE), an unsupervised ML model, is further developed to detect leak with unbalanced data. The results show AE ML model achieved high accuracy when leaks occur in pipes inside the sensor monitoring area, while the accuracy is compromised otherwise. This observation will provide guidelines to deploy monitoring sensors to cover the desired monitoring area. A novel strategy is proposed based on multiple independent detection attempts to further increase the reliability of leak detection by the AE and is found to significantly reduce the probability of false alarm. The trained AE model and leak detection strategy is further tested on a testbed WSN and achieved promising results. The ML model and leak detection strategy can be readily deployed for in-service WSNs using data obtained with internet-of-things (IoTs) technologies such as smart meters. 
    more » « less