Title: Wireless Sensor Node System to Monitor Pig Activities for Behavior Classification
Wireless sensor nodes (WSNs) are useful to monitor animals remotely and continuously. The proposed WSN aims to monitor pig activities, and it consists of a 3-axis accelerometer, a 3-axis gyroscope, and a microcontroller with embedded BLE (Bluetooth Low Energy) radio. The WSN was designed and prototyped with a custom PCB and used to collect data from pigs in field for about 131 hours, and the collected data was processed to classify pig behaviors with machine learning models. The sampling rate of the sensors is 10 samples per second. The proposed WSN dissipates 6.29 mW, on average, and the peak power dissipation is 41.01 mW during transmission of the sensed data. The WSN is estimated to operate for about three weeks with a coin cell battery CR2477. more »« less
Skaggs-Schellenberg, Russell; Wright, Daniel; Wang, Nan
(, IEEE UEMCON 2021)
null
(Ed.)
It is vital to consider the energy usage of motes when designing a Wireless Sensor Network (WSN). Protocols can be altered to their application to enhance a system's performance. This project modifies the Routing Protocol for Low-Power and Lossy Networks (RPL) protocol using a S-MAC algorithm to increase its energy efficiency. The project began with the application and the focus of the WSN. The proposed protocol was developed within the Cooja simulator, then implemented on TelosB motes using the Contiki-NG operating system. Lastly, the WSN was tested with the proposed system and compared against its original counterpart. In conclusion it was found that the proposed method provides a significant increase in energy efficiency, extending the life of a WSN.
Nishat, Tahsin Afroz; Jeong, Jong-Hyun; Jo, Hongki; Zhou, Qiang; Liu, Jian
(, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems)
Su, Zhongqing; Limongelli, Maria Pina; Glisic, Branko
(Ed.)
The battery-powered wireless sensor network (WSN) is a promising solution for structural health monitoring (SHM) applications because of its low cost and easy installation capability. However, the long-term WSN operation suffers from various concerns related to uneven battery degradation of wireless sensors, associated battery management, and replacement requirement, and ensuring desired quality of service (QoS) of the WSN in practice. The battery life is one of the biggest limiting factors for long-term WSN operation. Considering the costly maintenance trips for battery replacement, a lack of effective battery degradation management at the system level can lead to a failure in WSN operation. Moreover, the QoS needs to be ensured under various practical uncertainties. Optimal selection with a maximal number of nodes in WSN under uncertainties is a critical task to ensure the desired QoS. This study proposes a reinforcement learning (RL) based framework for active control of the battery degradation at the WSN system level with the aim of the battery group replacement while extending the service life and ensuring the QoS of WSN. A comprehensive simulation environment was developed in a real-life WSN setup, i.e. WSN for a cable-stayed bridge SHM, considering various practical uncertainties. The RL agent was trained under a developed RL environment to learn optimal nodes and duty cycles, meanwhile managing battery health at the network level. In this study, a mode shape-based quality index is proposed for the demonstration. The training and test results showed the prominence of the proposed framework in achieving effective battery health management of the WSN for SHM.
Dentremont, Christopher; Liu, Hong
(, 2024 International Wireless Communications and Mobile Computing (IWCMC))
Structural Health Monitoring (SHM) uses wireless sensor network (WSN) to monitor a civil construction’s conditions remotely and constantly for its sustainable usage. Security in WSN for SHM is essential to safeguard critical transportation infrastructure such as bridges. While WSN offers cost-effective solutions for Bridge SHM, its wireless nature expands attack surfaces, making security a significant concern. Despite progress in addressing security issues in WSN for Bridge SHM, challenges persist in device authentication due to the unique placement of sensor nodes and their resource constraints, particularly in energy conservation requirements to extend the system’s lifetime. To overcome these limitations, this paper proposes an innovative authentication scheme with deep learning at the physical layer. Our approach steers away from conventional device authentication methods: no challenge-response protocol with heavy communication overhead and no cryptography of intensive computation. Instead, we use radio frequency (RF) fingerprinting to authenticate sensor nodes. Deep learning is chosen for its ability to discover patterns in large datasets without manual feature engineering. We model our scheme on IEEE 802.11ah, Wi-Fi HaLow of long-range communication and low-power consumption for machine-to-machine (M2M) applications. Simulations and experiments using universal software radio peripheral (USRP) demonstrate the effectiveness of the proposed scheme. By integrating security into Cyber-Physical System/the Internet-of-Things (CPS/IoT) design of WSN for Bridge SHM, our work contributes to critical infrastructure protection.
Fan, Xudong; Zhang, Xijin; Yu, Xiong
(, Journal of Infrastructure Preservation and Resilience)
Abstract The water supply network (WSN) is subjected to leaks that compromise its service to the communities, which, however, is challenging to identify with conventional approaches before the consequences surface. This study developed Machine Learning (ML) models to detect leaks in the WDN. Water pressure data under leaking versus non-leaking conditions were generated with holistic WSN simulation code EPANET considering factors such as the fluctuating user demands, data noise, and the extent of leaks, etc. The results indicate that Artificial Neural Network (ANN), a supervised ML model, can accurately classify leaking versus non-leaking conditions; it, however, requires balanced dataset under both leaking and non-leaking conditions, which is difficult for a real WSN that mostly operate under normal service condition. Autoencoder neural network (AE), an unsupervised ML model, is further developed to detect leak with unbalanced data. The results show AE ML model achieved high accuracy when leaks occur in pipes inside the sensor monitoring area, while the accuracy is compromised otherwise. This observation will provide guidelines to deploy monitoring sensors to cover the desired monitoring area. A novel strategy is proposed based on multiple independent detection attempts to further increase the reliability of leak detection by the AE and is found to significantly reduce the probability of false alarm. The trained AE model and leak detection strategy is further tested on a testbed WSN and achieved promising results. The ML model and leak detection strategy can be readily deployed for in-service WSNs using data obtained with internet-of-things (IoTs) technologies such as smart meters.
Samudrala, Ananth Narayan; Blum, Rick S.
(, 2017 IEEE International Conference on Smart Grid and Smart Cities (ICSGSC))
Abstract (WSN) using encrypted non-binary quantized data is studied. In a WSN, sensors transmit their observations to a fusion center through a wireless medium where the observations are susceptible to unauthorized eavesdropping. Encryption approaches for WSNs with fixed threshold binary quantization were previously explored. However, fixed threshold binary quantization limits parameter estimation to scalar parameters. In this paper, we propose a stochastic encryption approach for WSNs that can operate on non-binary quantized observations and has the capability for vector parameter estimation. We extend a binary stochastic encryption approach proposed previously, to a nonbinary generalized case. Sensor outputs are quantized using a quantizer with R + 1 levels, where R in {1.2. 3 ...}, encrypted by flipping them with certain flipping probabilities, and then transmitted. Optimal estimators using maximum-likelihood estimation are derived for both a legitimate fusion center (LFC) and a third party fusion center (TPFC) perspectives. We assume the TPFC is unaware of the encryption. Asymptotic analysis of the estimators is performed by deriving the Cramer-Rao lower bound for LFC estimation, and the asymptotic bias and variance for TPFC estimation. Numerical results validating the asymptotic analysis are presented.
Cheung, Brandon, Xu, Yuezhong, and Ha, Dong Sam. Wireless Sensor Node System to Monitor Pig Activities for Behavior Classification. Retrieved from https://par.nsf.gov/biblio/10468910.
Cheung, Brandon, Xu, Yuezhong, & Ha, Dong Sam. Wireless Sensor Node System to Monitor Pig Activities for Behavior Classification. Retrieved from https://par.nsf.gov/biblio/10468910.
Cheung, Brandon, Xu, Yuezhong, and Ha, Dong Sam.
"Wireless Sensor Node System to Monitor Pig Activities for Behavior Classification". Country unknown/Code not available: IEEE International Midwest Symposium on Circuits and Systems. https://par.nsf.gov/biblio/10468910.
@article{osti_10468910,
place = {Country unknown/Code not available},
title = {Wireless Sensor Node System to Monitor Pig Activities for Behavior Classification},
url = {https://par.nsf.gov/biblio/10468910},
abstractNote = {Wireless sensor nodes (WSNs) are useful to monitor animals remotely and continuously. The proposed WSN aims to monitor pig activities, and it consists of a 3-axis accelerometer, a 3-axis gyroscope, and a microcontroller with embedded BLE (Bluetooth Low Energy) radio. The WSN was designed and prototyped with a custom PCB and used to collect data from pigs in field for about 131 hours, and the collected data was processed to classify pig behaviors with machine learning models. The sampling rate of the sensors is 10 samples per second. The proposed WSN dissipates 6.29 mW, on average, and the peak power dissipation is 41.01 mW during transmission of the sensed data. The WSN is estimated to operate for about three weeks with a coin cell battery CR2477.},
journal = {},
publisher = {IEEE International Midwest Symposium on Circuits and Systems},
author = {Cheung, Brandon and Xu, Yuezhong and Ha, Dong Sam},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.