skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Atmospheric Ammonia Measurements Over a Coastal Salt Marsh Ecosystem Along the Mid‐Atlantic U.S.
Abstract Measurements of atmospheric ammonia (NH3) concentrations and fluxes are limited in coastal regions in the eastern U.S. In this study, continuous and high temporal resolution measurements (5s) of atmospheric NH3concentrations were recorded using a cavity ring‐down spectrometer in a temperate tidal salt marsh at the St Jones Reserve (Dover, DE). Micrometeorological variables were measured using an eddy covariance system which is part of the AmeriFlux network (US‐StJ). Soil, plant, and water chemistry were also analyzed to characterize the sources and sinks of atmospheric NH3. A new analytical methodology was used to estimate the average ecosystem‐scale diurnal cycle of NH3fluxes by replicating the characteristics of a chamber experiment. This virtual chamber approach estimates positive surface fluxes in continuing strongly stable conditions when mixing with the air above is minimal. Our findings show that tidal water level may have a significant impact on NH3emissions from the marsh. The largest fluxes were observed at low tide when more soil was exposed. While it is expected that NH3fluxes will peak when the air temperature maximizes, high tide occurred concurrently with midday peaks in solar irradiance led to a decrease in NH3fluxes. Furthermore, soil, plant, and water chemistry measurements underpinning the NH3concentrations and fluxes lead us to conclude that this coastal wetland ecosystem can act as either a sink or a source of NH3. Such measurements provide novel data on which we can base reliable parameterizations to simulate NH3emissions from coastal salt marsh ecosystems using surface‐atmosphere transfer models.  more » « less
Award ID(s):
1652594
PAR ID:
10360543
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
126
Issue:
5
ISSN:
2169-8953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Coastal salt marshes store large amounts of carbon but the magnitude and patterns of greenhouse gas (GHG; i.e., carbon dioxide (CO2) and methane (CH4)) fluxes are unclear. Information about GHG fluxes from these ecosystems comes from studies of sediments or at the ecosystem‐scale (eddy covariance) but fluxes from tidal creeks are unknown. We measured GHG concentrations in water, water quality, meteorological parameters, sediment CO2efflux, ecosystem‐scale GHG fluxes, and plant phenology; all at half‐hour intervals over 1 year. Manual creek GHG flux measurements were used to calculate gas transfer velocity (k) and parameterize a model of water‐to‐atmosphere GHG fluxes. The creek was a source of GHGs to the atmosphere where tidal patterns controlled diel variability. Dissolved oxygen and wind speed were negatively correlated with creek CH4efflux. Despite lacking a seasonal pattern, creek CO2efflux was correlated with drivers such as turbidity across phenological phases. Overall, nighttime creek CO2efflux (3.6 ± 0.63 μmol/m2/s) was at least 2 times higher than nighttime marsh sediment CO2efflux (1.5 ± 1.23 μmol/m2/s). Creek CH4efflux (17.5 ± 6.9 nmol/m2/s) was 4 times lower than ecosystem‐scale CH4fluxes (68.1 ± 52.3 nmol/m2/s) across the year. These results suggest that tidal creeks are potential hotspots for CO2emissions and could contribute to lateral transport of CH4to the coastal ocean due to supersaturation of CH4(>6,000 μmol/mol) in water. This study provides insights for modeling GHG efflux from tidal creeks and suggests that changes in tide stage overshadow water temperature in determining magnitudes of fluxes. 
    more » « less
  2. Coastal salt marshes store large amounts of carbon but the magnitude and patterns of greenhouse gas (GHG; i.e., carbon dioxide (CO2</sub>) and methane (CH4</sub>)) fluxes are unclear. Information about GHG fluxes from these ecosystems comes from studies of sediments or at the ecosystem-scale (eddy covariance) but fluxes from tidal creeks are unknown. </div>This dataset includes GHG concentrations in water, water quality, meteorology, sediment CO2</sub> efflux, ecosystem-scale GHG fluxes, and plant phenology; all at half-hour time-steps over one year.</div></div>This study was carried out in the St. Jones Reserve, a component of the Delaware National Estuarine Research Reserve in Dover, Delaware, U.S.A. The study site is part of the following networks:</div></div>- AmeriFlux (https://ameriflux.lbl.gov/sites/siteinfo/US-StJ) </div>- Phenocam (https://phenocam.sr.unh.edu/webcam/sites/stjones/) </div></div>The GHG concentration and efflux sampling point was located at Aspen Landing within a microtidal (mean tide range of 1.5 m), mesohaline (typical salinity of 5-18 ppt) salt marsh (Delaware Department of Natural Resources and Environmental Control, 2006) tidal creek.</div></div>Main reference:</div> Trifunovic, B., Vázquez‐Lule, A., Capooci, M., Seyfferth, A. L., Moffat, C., & Vargas, R. (2020). Carbon dioxide and methane emissions from a temperate salt marsh tidal creek. Journal of Geophysical Research: Biogeosciences, 125, e2019JG005558. https://doi.org/ 10.1029/2019JG005558 </p> </div> </div> </div></div> 
    more » « less
  3. Abstract Tidal salt marshes produce and emit CH4. Therefore, it is critical to understand the biogeochemical controls that regulate CH4spatial and temporal dynamics in wetlands. The prevailing paradigm assumes that acetoclastic methanogenesis is the dominant pathway for CH4production, and higher salinity concentrations inhibit CH4production in salt marshes. Recent evidence shows that CH4is produced within salt marshes via methylotrophic methanogenesis, a process not inhibited by sulfate reduction. To further explore this conundrum, we performed measurements of soil–atmosphere CH4and CO2fluxes coupled with depth profiles of soil CH4and CO2pore water gas concentrations, stable and radioisotopes, pore water chemistry, and microbial community composition to assess CH4production and fate within a temperate tidal salt marsh. We found unexpectedly high CH4concentrations up to 145,000 μmol mol−1positively correlated with S2−(salinity range: 6.6–14.5 ppt). Despite large CH4production within the soil, soil–atmosphere CH4fluxes were low but with higher emissions and extreme variability during plant senescence (84.3 ± 684.4 nmol m−2 s−1). CH4and CO2within the soil pore water were produced from young carbon, with most Δ14C‐CH4and Δ14C‐CO2values at or above modern. We found evidence that CH4within soils was produced by methylotrophic and hydrogenotrophic methanogenesis. Several pathways exist after CH4is produced, including diffusion into the atmosphere, CH4oxidation, and lateral export to adjacent tidal creeks; the latter being the most likely dominant flux. Our findings demonstrate that CH4production and fluxes are biogeochemically heterogeneous, with multiple processes and pathways that can co‐occur and vary in importance over the year. This study highlights the potential for high CH4production, the need to understand the underlying biogeochemical controls, and the challenges of evaluating CH4budgets and blue carbon in salt marshes. 
    more » « less
  4. Abstract Methane (CH4) is a potent greenhouse gas (GHG) with atmospheric concentrations that have nearly tripled since pre‐industrial times. Wetlands account for a large share of global CH4emissions, yet the magnitude and factors controlling CH4fluxes in tidal wetlands remain uncertain. We synthesized CH4flux data from 100 chamber and 9 eddy covariance (EC) sites across tidal marshes in the conterminous United States to assess controlling factors and improve predictions of CH4emissions. This effort included creating an open‐source database of chamber‐based GHG fluxes (https://doi.org/10.25573/serc.14227085). Annual fluxes across chamber and EC sites averaged 26 ± 53 g CH4m−2 year−1, with a median of 3.9 g CH4m−2 year−1, and only 25% of sites exceeding 18 g CH4m−2 year−1. The highest fluxes were observed at fresh‐oligohaline sites with daily maximum temperature normals (MATmax) above 25.6°C. These were followed by frequently inundated low and mid‐fresh‐oligohaline marshes with MATmax ≤25.6°C, and mesohaline sites with MATmax >19°C. Quantile regressions of paired chamber CH4flux and porewater biogeochemistry revealed that the 90th percentile of fluxes fell below 5 ± 3 nmol m−2 s−1at sulfate concentrations >4.7 ± 0.6 mM, porewater salinity >21 ± 2 psu, or surface water salinity >15 ± 3 psu. Across sites, salinity was the dominant predictor of annual CH4fluxes, while within sites, temperature, gross primary productivity (GPP), and tidal height controlled variability at diel and seasonal scales. At the diel scale, GPP preceded temperature in importance for predicting CH4flux changes, while the opposite was observed at the seasonal scale. Water levels influenced the timing and pathway of diel CH4fluxes, with pulsed releases of stored CH4at low to rising tide. This study provides data and methods to improve tidal marsh CH4emission estimates, support blue carbon assessments, and refine national and global GHG inventories. 
    more » « less
  5. Abstract Tidal wetlands are comprised of complex interdependent pathways where measurements of carbon exchange are often scale dependent. Common data collection methods (i.e., chambers and eddy covariance) are inherently constrained to different spatial and temporal scales which could generate biased information for applications of carbon accounting, identifying functional relationships and predicting future responses to climate change. Consequently, it is needed to systematically evaluate measurements derived from multiple approaches to identify differences and how techniques complement each other to reconcile interpretations. To accomplish this, we tested ecosystem‐scale eddy covariance with plot‐scale chamber measurements within a temperate salt marsh. We found good agreement (R2 = 0.71–0.95) when comparing measurements of CH4emissions and CO2exchange but this agreement was dependent upon canopy phenology with discrepancies mainly arising during senescence and dormancy phenophases. The environmental drivers for CH4and CO2fluxes were mostly preserved across different measurement techniques, but the number of drivers increases while their individual strength decreases at the ecosystem scale. Empirical upscaling models parameterized with chamber measurements overestimated annual net ecosystem exchange (NEE; 108%) and gross primary production (GPP; 12%) while underestimating ecosystem respiration (Reco; 14%) and CH4emissions (69%) compared to eddy covariance measurements. Our results suggest that the environmental complexity of CH4and CO2fluxes in salt marshes may be underestimated by chamber‐based measurements, and highlights how different techniques are complementary while considering limitations at each level of measurement. 
    more » « less