skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rising Seas, Rising Inequity? Communities at Risk in the San Francisco Bay Area and Implications for Adaptation Policy
Abstract Increasing coastal flooding threatens urban centers worldwide. Projections of physical damages to structures and their contents can characterize the monetary scale of risk, but they lack relevant socioeconomic context. The impact of coastal flooding on communities hinges not only on the cost, but on the ability of households to pay for the damages. Here, we repurpose probabilistic risk assessment to analyze the monetary and social risk associated with coastal flooding in the San Francisco Bay Area for 2020–2060. We show that future coastal flooding could financially ruin a substantial number of households by burdening them with flood damage costs that exceed discretionary household income. We quantify these impacts at the census block group scale by computing the percentage of households without discretionary income, before and after coastal flooding costs. We find that for several coastal communities in San Mateo County more than 50% of households will be facing financial instability, highlighting the need for immediate policy interventions that target existing, socially produced risk rather than waiting for potentially elusive certainty in sea level rise projections. We emphasize that the percentage of financially unstable households is particularly high in racially diverse and historically disadvantaged communities, highlighting the connection between financial instability and inequity. While our estimates are specific to the San Francisco Bay Area, our granular, household‐level perspective is transferable to other urban centers and can help identify the specific challenges that different communities face and inform appropriate adaptation interventions.  more » « less
Award ID(s):
1739027
PAR ID:
10360549
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Earth's Future
Volume:
9
Issue:
7
ISSN:
2328-4277
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The risk of compound coastal flooding in the San Francisco Bay Area is increasing due to climate change yet remains relatively underexplored. Using a novel hybrid statistical-dynamical downscaling approach, this study investigates the impacts of climate change induced sea-level rise and higher river discharge on the magnitude and frequency of flooding events as well as the relative importance of various forcing drivers to compound flooding within the Bay. Results reveal that rare occurrences of flooding under the present-day climate are projected to occur once every few hundred years under climate change with relatively low sea-level rise (0.5 m) but would become annual events under climate change with high sea-level rise (1.0 to 1.5 m). Results also show that extreme water levels that are presently dominated by tides will be dominated by sea-level rise in most locations of the Bay in the future. The dominance of river discharge to the non-tidal and non-sea-level rise driven water level signal in the North Bay is expected to extend ~15 km further seaward under extreme climate change. These findings are critical for informing climate adaptation and coastal resilience planning in San Francisco Bay. 
    more » « less
  2. Description: This NSF-funded project (Award #2135713) investigates resilience in low-income households by examining energy efficiency, appliance use, and adaptive mechanisms among marginalized communities, with a focus on Pennsylvania's urban centers. The research aims to establish pathways to disaster-resilient, healthy, and sustainable cities, where the voices and agency of vulnerable populations are prioritized. Central objectives include identifying resilience capacities, well-being outcomes, and existing adaptive management mechanisms, especially concerning access to efficient appliances and alternative energy sources for low-income households during extreme weather events. Data Reuse: This dataset, which spans three rounds of data collection (May 2023, May 2024, and September 2024) targeting the low-income communities in Pennsylvania, is valuable for comparison with U.S. Energy Information Administration (EIA) data and includes questions similar to those from the Residential Energy Consumption Survey (RECS) for comparability. This dataset can be used to investigate household appliance usage, resilience during extreme temperatures, and adoption rates of energy-efficient appliances. The dataset can further inform policies on energy access and efficiency in low-income settings, especially as they pertain to marginalized urban communities. Uniqueness: Unlike national datasets, this research integrates community voices and focuses on marginalized, low-income urban populations, revealing their unique energy resilience challenges. Additionally, the study’s structure—collecting data across multiple seasons—enables a nuanced analysis of seasonal influences on energy resilience and appliance use. Audience: This dataset will benefit academic researchers in sustainability, policymakers, and public health advocates interested in disaster resilience and low-income energy access. It is also intended for use by local community organizations that support sustainable urban development and resilience-building for vulnerable populations. 
    more » « less
  3. This study uses mobility data in the context of 2017 Hurricane Harvey in Harris County to examine the impact of flooding on access to dialysis centers. We examined access dimensions using static and dynamic metrics. The static metric is the shortest distance from census block groups to the closest centers. Dynamic metrics are: 1) redundancy (daily unique number of centers visited), 2) frequency (daily number of visits to dialysis centers), and 3) proximity (visits weighted by distance to dialysis centers). The results show that: the extent of dependence of regions on dialysis centers varies; flooding significantly reduces access redundancy and frequency of dialysis centers; regions with a greater minority percentage and lower household income were likely to experience extensive disruptions; high-income regions more quickly revert to pre-disaster levels; larger centers located in non-flooded areas are critical to absorbing the unmet demand from disrupted facilities. 
    more » « less
  4. The uneven spread of COVID-19 has resulted in disparate experiences for marginalized populations in urban centers. Using computational models, we examine the effects of local cohesion on COVID-19 spread in social contact networks for the city of San Francisco, finding that more early COVID-19 infections occur in areas with strong local cohesion. This spatially correlated process tends to affect Black and Hispanic communities more than their non-Hispanic White counterparts. Local social cohesion thus acts as a potential source of hidden risk for COVID-19 infection. 
    more » « less
  5. Abstract Climate change impacts threaten the stability of the US housing market. In response to growing concerns that increasing costs of flooding are not fully captured in property values, we quantify the magnitude of unpriced flood risk in the housing market by comparing the empirical and economically efficient prices for properties at risk. We find that residential properties exposed to flood risk are overvalued by US$121–US$237 billion, depending on the discount rate. In general, highly overvalued properties are concentrated in counties along the coast with no flood risk disclosure laws and where there is less concern about climate change. Low-income households are at greater risk of losing home equity from price deflation, and municipalities that are heavily reliant on property taxes for revenue are vulnerable to budgetary shortfalls. The consequences of these financial risks will depend on policy choices that influence who bears the costs of climate change. 
    more » « less