skip to main content

Search for: All records

Award ID contains: 1842643

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT This paper formulates a velocity moment-based quasi-linear theory that combines the impacts of weakly unstable proton–cyclotron- (or, equivalently, electromagnetic ion cyclotron) and proton-mirror instabilities on the solar wind plasma initially characterized by an excessive perpendicular proton temperature anisotropy. The present formalism is an alternative to the existing model in that the weakly unstable modes are characterized by analytical formalism that involves the assumption of weak growth rate and/or fluid-theoretical dispersion relation, in place of numerical root-finding method based on the transcendental plasma dispersion function. This results in an efficient numerical platform for analyzing the quasi-linear development of the saidmore »instabilities. Such a formalism may be useful in the larger context of global solar wind modelling effort where an efficient calculation of self-consistent wave–particle interaction process is called for. A direct comparison with spacecraft observations of solar wind proton data distribution shows that the present weak growth rate formalism of quasi-linear calculation produces results that are consistent with the observation.« less
    Free, publicly-accessible full text available December 8, 2022
  2. Free, publicly-accessible full text available December 1, 2022
  3. Free, publicly-accessible full text available December 1, 2022
  4. Free, publicly-accessible full text available December 1, 2022
  5. The ability of space plasmas to self-regulate through mechanisms involving self-generated fluctuations is a topic of high interest. This paper presents the results of a new advanced quasilinear (QL) approach for the instability of electromagnetic ion-cyclotron modes driven by the relative alpha-proton drift observed in solar wind. For an extended parametric analysis, the present QL approach includes also the effects of intrinsic anisotropic temperatures of these populations. The enhanced fluctuations contribute to an exchange of energy between proton and alpha particles, leading to important variations of the anisotropies, the proton-alpha drift and the temperature contrast. The results presented here canmore »help understand the observational data, in particular, those revealing the local variations associated with the properties of protons and alpha particles as well as the spatial profiles in the expanding solar wind.« less
    Free, publicly-accessible full text available December 1, 2022
  6. ABSTRACT The solar wind plasma is characterized by unequal effective kinetic temperatures defined in perpendicular and parallel directions with respect to the ambient magnetic field. For electrons, the excessive perpendicular temperature anisotropy leads to quasi-parallel electromagnetic electron cyclotron (or whistler) instability and aperiodic electron-mirror instability with oblique wave vectors. The present paper carries out a direct side-by-side comparison of quasi-linear (QL) theory and particle-in-cell (PIC) simulation of combined mirror and cyclotron instabilities acting upon the initially anisotropic electron temperatures, and find that the QL theory satisfactorily encapsulates the non-linear aspect of the combined instability effects. However, a discrepancy between themore »present study and a previous PIC simulation result is also found, which points to the need for further investigation to resolve such an issue.« less
    Free, publicly-accessible full text available November 30, 2022
  7. Abstract Weakly turbulent processes that take place in plasmas are customarily formulated in terms of kinetic theory. However, owing to an inherent complexity associated with the problem, thus far the theory is fully developed largely for unmagnetized plasmas. In the present paper it is shown that a warm two fluid theory can successfully be employed in order to partially formulate the weak turbulence theory in spatially uniform plasma. Specifically, it is shown that the nonlinear wave-wave interaction, or decay processes, can be reproduced by the two-fluid formalism. The present finding shows that the same approach can in principle be extendedmore »to magnetized plasmas, which is a subject of future work.« less
    Free, publicly-accessible full text available November 3, 2022
  8. Understanding the nature and characteristics of high-frequency waves inside a flux rope may be important as the wave-particle interaction is important for charged-particle energization and the ensuing dissipation process. We analyze waves generated by an electron beam in a crater-shaped magnetic flux rope observed by MMS spacecraft on the dawnside tailward magnetopause. In this MMS observation, a depression of magnetic field, or a crater, of ∼100 km is located at the center of the magnetic flux rope of ∼650 km. There exist parallel and perpendicular electrostatic wave modes inside the depression of the magnetic field at the center of the flux rope,more »and they are distinguished by their locations and frequencies. The parallel mode exists at the center of the magnetic depression and its power spectrum peaks below F ce (electron cyclotron frequency). In contrast, the perpendicular mode exists in the outer region associated with the magnetic depression, and its power spectrum peaks near F ce . The linear analysis of kinetic instability using a generalized dispersion solver shows that the parallel mode can be generated by the electron beam of 5,000 km/s. They can thermalize electrons ≲100 eV effectively. However, the generation mechanism of the perpendicular mode is not clear yet, which requires further study.« less
    Free, publicly-accessible full text available September 30, 2022
  9. Ion holes refer to the phase-space structures where the trapped ion density is lower at the center than at the rim. These structures are commonly observed in collisionless plasmas, such as the Earth’s magnetosphere. This paper investigates the role of multiple parameters in the generation and structure of ion holes. We find that the ion-to-electron temperature ratio and the background plasma distribution function of the species play a pivotal role in determining the physical plausibility of ion holes. It is found that the range of width and amplitude that defines the existence of ion holes splits into two separate domainsmore »as the ion temperature exceeds that of the electrons. Additionally, the present study reveals that the ion holes formed in a plasma with ion temperature higher than that of the electrons have a hump at its center.« less
    Free, publicly-accessible full text available September 1, 2022