skip to main content


Title: High‐throughput computational design of halide perovskites and beyond for optoelectronics
Abstract

Halide perovskites have attracted great interest as promising next‐generation materials in optoelectronics, ranging from solar cells to light‐emitting diodes. Despite their exceptional optoelectronic properties and low cost, the prototypical organic–inorganic hybrid lead halide perovskites suffer from toxicity and low stability. Therefore, it is of high demand to search for stable and nontoxic alternatives to the hybrid lead halide perovskites. Recently, high‐throughput computational materials design has emerged as a powerful approach to accelerate the discovery of new halide perovskite compositions or even novel compounds beyond perovskites. In this review, we discuss how this approach discovers halide perovskites and beyond for optoelectronics. We first overview the background of halide perovskites and methodologies in high‐throughput computational design. Then, we focus on materials properties for different optoelectronic applications, and how they are assessed with materials descriptors. Finally, we review different studies in terms of specific materials types to discuss their design principles, screening results, and experimental verification.

This article is categorized under:

Structure and Mechanism > Computational Materials Science

Electronic Structure Theory > Density Functional Theory

 
more » « less
NSF-PAR ID:
10360564
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
WIREs Computational Molecular Science
Volume:
11
Issue:
3
ISSN:
1759-0876
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Two-dimensional (2D) organic–inorganic hybrid halide perovskites exhibit unique properties, such as long charge carrier lifetimes, high photoluminescence quantum efficiencies, and great tolerance to defects. Over the last several decades tremendous progress has occurred in the development of 2D layered halide perovskite semiconductor materials and devices. Chemical functionalization of 2D halide perovskites is an effective approach for tuning their electronic properties. A large amount of effort has been made in compositional engineering of the cations and anions in the perovskite lattice. However, few efforts have incorporated rationally designed semiconducting organic moieties into these systems to alter the overall chemical and optoelectronic properties of 2D perovskites. In fact, incorporation of large conjugated organic groups in the spatially confined inorganic perovskite matrix was found to be challenging, and this synthetic challenge hinders a deeper understanding of the materials’ structure–property relationships. Recently, exciting progress has been made regarding the molecular design, optical characterization, and device fabrication of novel 2D halide perovskite materials that incorporate functional organic semiconducting building blocks. In this article, we provide a timely review regarding this recent progress. Moreover, we discuss successes and current challenges regarding the synthesis, characterization, and device applications of such hybrid materials and provide a perspective on the true future promise of these advanced nanomaterials. 
    more » « less
  2. Abstract

    Three‐dimensional (3D) organic–inorganic metal halide perovskite materials possess great potential applications for approaching efficient optoelectronics due to the unique optoelectronic properties of perovskite materials and cost‐effective manufacturing possibilities of optoelectronics. However, the scientific and technical challenges of 3D perovskite materials were their inferior long‐term stability, which hampered their practical applications. The low‐dimensional perovskite materials composed of alternating organic and inorganic layers are one of the most credible paths toward stable perovskite photovoltaics and optoelectronics. In this short review, we first present a discussion of the crystal structure and nontrivial optoelectronic properties of the low‐dimensional halide perovskites. The synthetic methods for the preparation of the low‐dimensional halide perovskites are reviewed. After that, we focus on the recent development of perovskite photovoltaics, light‐emitting diodes, and lasers by the low‐dimensional halide perovskites. Finally, we outline the challenges of the low‐dimensional halide perovskites and their applications.

    image

     
    more » « less
  3. Halide perovskites, such as methylammonium lead halide perovskites (MAPbX3,X=I, Br, and Cl), are emerging as promising candidates for a wide range of optoelectronic applications, including solar cells, light-emitting diodes, and photodetectors, due to their superior optoelectronic properties. All-inorganic lead halide perovskitesCsPbX3are attracting a lot of attention because replacing the organic cations withCs+enhances the stability, and its halide-mixing derivatives offer broad bandgap tunability covering nearly the entire visible spectrum. However, there is evidence suggesting that the optical properties of mixed-halide perovskites are influenced by phase segregation under external stimuli, especially illumination, which may negatively impact the performance of optoelectronic devices. It is reported that the mixed-halide perovskites in forms of thin films and nanocrystals are segregated into a low-bandgap I-rich phase and a high-bandgap Br-rich phase. Herein, we present a critical review on the synthesis and basic properties of all-inorganic perovskites, phase-segregation phenomena, plausible mechanisms, and methods to mitigate phase segregation, providing insights on advancing mixed-halide perovskite optoelectronics with reliable performance.

     
    more » « less
  4. null (Ed.)
    Metal halide perovskites (MHPs) are frontrunners among solution-processable materials for lightweight, large-area and flexible optoelectronics. These materials, with the general chemical formula AMX 3 , are structurally complex, undergoing multiple polymorph transitions as a function of temperature and pressure. In this review, we provide a detailed overview of polymorphism in three-dimensional MHPs as a function of composition, with A = Cs + , MA + , or FA + , M = Pb 2+ or Sn 2+ , and X = Cl − , Br − , or I − . In general, perovskites adopt a highly symmetric cubic structure at elevated temperatures. With decreasing temperatures, the corner-sharing MX 6 octahedra tilt with respect to one another, resulting in multiple polymorph transitions to lower-symmetry tetragonal and orthorhombic structures. The temperatures at which these phase transitions occur can be tuned via different strategies, including crystal size reduction, confinement in scaffolds and (de-)pressurization. As discussed in the final section of this review, these solid-state phase transformations can significantly affect optoelectronic properties. Understanding factors governing these transitions is thus critical to the development of high-performance, stable devices. 
    more » « less
  5. One of the organic components in the perovskite photo-absorber, the methylammonium cation, has been suggested to be a roadblock to the long-term operation of organic–inorganic hybrid perovskite-based solar cells. In this work we systematically explore the crystallographic and optical properties of the compositional space of mixed cation and mixed halide lead perovskites, where formamidinium (FA + ) is gradually replaced by cesium (Cs + ), and iodide (I − ) is substituted by bromide (Br − ), i.e. , Cs y FA 1− y Pb(Br x I 1− x ) 3 . Higher tolerance factors lead to more cubic structures, whereas lower tolerance factors lead to more orthorhombic structures. We find that while some correlation exists between the tolerance factor and structure, the tolerance factor does not provide a holistic understanding of whether or not a perovskite structure will fully form. By screening 26 solar cells with different compositions, our results show that Cs 1/6 FA 5/6 PbI 3 delivers the highest efficiency and long-term stability among the I-rich compositions. This work sheds light on the fundamental structure–property relationships in the Cs y FA 1− y Pb(Br x I 1− x ) 3 compositional space, providing vital insight to the design of durable perovskite materials. Our approach provides a library of structural and optoelectronic information for this compositional space. 
    more » « less