skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Large‐Scale Atmospheric Drivers of Snowfall Over Thwaites Glacier, Antarctica
Abstract High snowfall events on Thwaites Glacier (TG, West Antarctica) are a key influencer of its mass balance, and can act to mitigate sea level rise due to ocean warming‐induced ice loss. We use the output of a high‐resolution regional climate model, RACMO2, in conjunction with MERRA‐2 and ERA5 atmospheric reanalyses for the period 1980–2015 and show that there is a pronounced seasonal cycle in snowfall over TG, driven by the Amundsen Sea Low (ASL). We find that the total annual snowfall does not correlate significantly with the Southern Annular Mode or El Niño Southern Oscillation, but it does relate to the zonal wave three pattern over Antarctica through the coupling of the ASL with a blocking high over the Antarctic Peninsula during high snowfall events. Our results highlight that atmospheric circulation and consequent high snowfall events on TG are highly variable, and recognizing their future change will aid to improve predictions of mass balance.  more » « less
Award ID(s):
1929991
PAR ID:
10360577
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
17
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Antarctic ice sheet (AIS) is sensitive to short‐term extreme meteorological events that can leave long‐term impacts on the continent's surface mass balance (SMB). We investigate the impacts of atmospheric rivers (ARs) on the AIS precipitation budget using an AR detection algorithm and a regional climate model (Modèle Atmosphérique Régional) from 1980 to 2018. While ARs and their associated extreme vapor transport are relatively rare events over Antarctic coastal regions (∼3 days per year), they have a significant impact on the precipitation climatology. ARs are responsible for at least 10% of total accumulated snowfall across East Antarctica (localized areas reaching 20%) and a majority of extreme precipitation events. Trends in AR annual frequency since 1980 are observed across parts of AIS, most notably an increasing trend in Dronning Maud Land; however, interannual variability in AR frequency is much larger. This AR behavior appears to drive a significant portion of annual snowfall trends across East Antarctica, while controlling the interannual variability of precipitation across most of the AIS. AR landfalls are most likely when the circumpolar jet is highly amplified during blocking conditions in the Southern Ocean. There is a fingerprint of the Southern Annular Mode (SAM) on AR variability in West Antarctica with SAM+ (SAM−) favoring increased AR frequency in the Antarctic Peninsula (Amundsen‐Ross Sea coastline). Given the relatively large influence ARs have on precipitation across the continent, it is advantageous for future studies of moisture transport to Antarctica to consider an AR framework especially when considering future SMB changes. 
    more » « less
  2. Abstract The Greenland Ice Sheet (GrIS) is losing mass at an increasing rate yet mass gain from snowfall still exceeds the loss attributed to surface melt processes on an annual basis. This work assesses the relationship between persistent atmospheric blocking across the Euro‐Atlantic region and enhanced precipitation processes over the central GrIS during June–August and September–November. Results show that the vast majority of snowfall events in the central GrIS coincide with Euro‐Atlantic blocking. During June–August, snowfall events are produced primarily by mixed‐phase clouds (88%) and are linked to a persistent blocking anticyclone over southern Greenland (84%). The blocking anticyclone slowly advects warm, moist air masses into western and southern Greenland, with positive temperature and water vapor anomalies that intensify over the central GrIS. A zonal integrated water vapor transport pattern south of Greenland indicates a southern shift of the North Atlantic storm track associated with the high‐latitude blocking. In contrast, snowfall events during September–November are largely produced by ice‐phase clouds (85%) and are associated with a blocking anticyclone over the Nordic Seas and blocked flow over northern Europe (78%). The blocking anticyclone deflects the westerly North Atlantic storm track poleward and enables the rapid transport of warm, moist air masses up the steep southeastern edge of the GrIS, with positive temperature and water vapor anomalies to the east and southeast of Greenland. These results emphasize the critical role of Euro‐Atlantic blocking in promoting snowfall processes over the central GrIS and the importance of accurate representation of blocking in climate model projections. 
    more » « less
  3. Ice core measurements reveal dipole-like snow accumulation trends over West Antarctica throughout the 20th century, with an increase of >2000 billion metric tons over the Antarctic Peninsula and Ellsworth Land but a decrease of ~500 billion metric tons over Marie Byrd Land. Although atmospheric teleconnections were frequently revealed, linking variability between tropics and higher latitudes on interannual and decadal timescales, centennial-scale teleconnection is absent from literature. Here, using statistical analysis and numerical experiments, we reveal that changes of tropical oceans throughout the 20th century drive the long-term Antarctic snowfall trend. A pronounced warming over the tropical Atlantic and a moderate cooling over the equatorial Pacific have driven an adjustment of moisture transport and thus snowfall pattern in West Antarctica. Our study reveals a centennial tropical-polar teleconnection, producing long-term trends with opposing changes across the regions. Remote forcing from the tropics increased the mass accumulation over Antarctica, balanced rapid iceshelf thinning in recent decades, contributing to global sea-level changes. 
    more » « less
  4. Abstract A crucial factor influencing the mass balance of the West Antarctic Ice Sheet is the Amundsen Sea Low (ASL), a climatological low‐pressure region situated off the West Antarctic coast. However, albeit the deepening of the ASL since the 1950s has been attributed to anthropogenic forcing, the multi‐decadal variability of the ASL remains poorly understood, because of a lack of long observations. Here, we apply a newly developed data assimilation method to reconstruct the ASL over 1870–2000. We study the forced and internal variability of the ASL using our new reconstruction in concert with existing large ensembles of climate model simulations. Our findings robustly demonstrate that an atmospheric teleconnection originating from the tropical Indo‐Pacific is the main driver of ASL variability at the multi‐decadal time scale, with resemblance to the Interdecadal Pacific Oscillation. Since the mid‐20th century, anthropogenic forcing has emerged as a dominant contributor to the strengthening of the ASL. 
    more » « less
  5. Abstract The Getz region of West Antarctica is losing ice at an increasing rate; however, the forcing mechanisms remain unclear. Here we use satellite observations and an ice sheet model to measure the change in ice speed and mass balance of the drainage basin over the last 25-years. Our results show a mean increase in speed of 23.8 % between 1994 and 2018, with three glaciers accelerating by over 44 %. Speedup across the Getz basin is linear, with speedup and thinning directly correlated confirming the presence of dynamic imbalance. Since 1994, 315 Gt of ice has been lost contributing 0.9 ± 0.6 mm global mean sea level, with increased loss since 2010 caused by a snowfall reduction. Overall, dynamic imbalance accounts for two thirds of the mass loss from this region of West Antarctica over the past 25-years, with a longer-term response to ocean forcing the likely driving mechanism. 
    more » « less