skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ant nest architecture is shaped by local adaptation and plastic response to temperature
Abstract Social insects are among the most abundant arthropods in terrestrial ecosystems, where they provide ecosystem services. The effect of subterranean activity of ants on soil is well-studied, yet little is known about nest architecture due to the difficulty of observing belowground patterns. Furthermore, many species’ ranges span environmental gradients, and their nest architecture is likely shaped by the climatic and landscape features of their specific habitats. We investigated the effects of two temperature treatments on the shape and size of nests built byFormica podzolicaants collected from high and low elevations in the Colorado Rocky Mountains in a full factorial experiment. Ants nested in experimental chambers with soil surface temperatures matching the local temperatures of sample sites. We observed a plastic response of nest architecture to conditions experienced during excavation; workers experiencing a high temperature excavated deeper nests than those experiencing a cooler temperature. Further, we found evidence of local adaptation to temperature, with a significant interaction effect of natal elevation and temperature treatment on nest size and complexity. Specifically, workers from high elevation sites built larger nests with more tunnels when placed in the cool surface temperature treatment, and workers from low elevation sites exhibited the opposite pattern. Our results suggest that subterranean ant nest architecture is shaped by a combination of plastic and locally adapted building behaviors; we suggest that the flexibility of this ‘extended phenotype’ likely contributes to the widespread success of ants.  more » « less
Award ID(s):
1631776
PAR ID:
10360665
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Ants alter soil moisture and nutrient distributions during foraging and nest construction. Here, we investigated how the effects of ants on soil vary with elevation. We compared moisture, carbon, and nitrogen levels in soil samples taken both within nests and nearby the nests (control) of two subterranean ant species. Using a paired design, we sampled 17 sites along elevation gradients in two California mountain ranges (Formica francoeuriin the San Jacinto mountains andFormica sibyllain the Sierra Nevada). We observed an interaction between soil carbon and nitrogen composition and elevation in each mountain range. At lower elevations, nest soil had lower amounts of carbon and nitrogen than control soil, but at higher elevations, nest soil had higher amounts of carbon and nitrogen than control soil. However, our sampling method may only breach the interior of ant nests in some environments. The nest soil moisture did not show any elevational patterns in either mountain range. Ants likely modulate soil properties differently across environmental gradients, but testing this effect must account for variable nest architecture and other climate and landscape differences across diverse habitats. 
    more » « less
  2. Abstract Behavior is shaped by genes, environment, and evolutionary history in different ways. Nest architecture is an extended phenotype that results from the interaction between the behavior of animals and their environment. Nests built by ants are extended phenotypes that differ in structure among species and among colonies within a species, but the source of these differences remains an open question. To investigate the impact of colony identity (genetics), evolutionary history (species), and the environment on nest architecture, we compared how two species of harvester ants, Pogonomyrmex californicus and Veromessor andrei, construct their nests under different environmental conditions. For each species, we allowed workers from four colonies to excavate nests in environments that differed in temperature and humidity for seven days. We then created casts of each nest to compare nest structures among colonies, between species, and across environmental conditions. We found differences in nest structure among colonies of the same species and between species. Interestingly, however, environmental conditions did not have a strong influence on nest structure in either species. Our results suggest that extended phenotypes are shaped more strongly by internal factors, such as genes and evolutionary history, and are less plastic in response to the abiotic environment, like many physical and physiological phenotypes. 
    more » « less
  3. Abstract Many social insects construct nests, which are fundamentally important to the success and survival of the colony. We review recent work on understanding the construction and function of social insect nests and attempt to identify general principles of collective construction and nest architecture in insect societies. We look across taxa, including termites, ants, social bees, and social wasps, specifically focusing on experimental studies that have elucidated the mechanisms by which insect nests are successfully built. We find that selecting materials and nest sites are crucial decisions made by social insects that impact both the resulting nest architecture and colony survival. Social insects utilize cohesive, malleable material to build nests. Often, nests are constructed in a modular manner, allowing social insects to exploit a variety of materials while growing to accommodate population explosions from a few individuals to millions. We note that the regulatory principles that coordinate building behaviors are consistent across taxa. Specifically, encounter rate, positive and negative feedback cycles, stigmergy, and genetic influence all govern the actions of multiple builders and result in a cohesive, functional structure. We further consider empirical studies that demonstrate how nests impact collective behaviors and help insect societies flourish. We find that all social insect nests serve the same key functions: to protect residents and to offer a means of organizing their collective behaviors. Ultimately, we expand our analysis to experiments utilizing robot models of societies, which aim to uncover unifying themes of construction and space use by collectives. Overall, we show that social insect nests represent engineering and construction marvels that provide fundamental insights into how biological collectives succeed in the natural environment, and we suggest that the use of robotic models may provide insight into these fascinating behaviors and structures. 
    more » « less
  4. null (Ed.)
    Bumble bee queens initiate nests solitarily and transition to living socially once they successfully rear their first cohort of offspring. Bumble bees are disproportionately important for early season pollination, and many populations are experiencing dramatic declines. In this system, the onset of the social stage is critical for nest survival, yet the mechanisms that facilitate this transition remain understudied. Further, the majority of conservation efforts target the social stage of the bumble bee life cycle and do not address the solitary founding stage. We experimentally manipulated the timing of worker emergence in young nests of bumble bee (Bombus impatiens) queens to determine whether and how queen fecundity and survival are impacted by the emergence of workers in the nest. We found that queens with workers added to the nest exhibit increased ovary activation, accelerated egg laying, elevated juvenile hormone (JH) titres and also lower mortality relative to solitary queens. We also show that JH is more strongly impacted by the social environment than associated with queen reproductive state, suggesting that this key regulator of insect reproduction has expanded its function in bumble bees to also influence social organization. We further demonstrate that these effects are independent of queen social history, suggesting that this underlying mechanism promoting queen fecundity is reversible and short lived. Synchronization between queen reproductive status and emergence of workers in the nest may ultimately increase the likelihood of early nesting success in social systems with solitary nest founding. Given that bumble bee workers regulate queen physiology as we have demonstrated, the timing of early worker emergence in the nest likely impacts queen fitness, colony developmental trajectories and ultimately nesting success. Collectively, our findings underline the importance of conservation interventions for bumble bees that support the early nesting period and facilitate the production and maintenance of workers in young nests 
    more » « less
  5. Abstract Natural variation can provide important insights into the genetic and environmental factors that shape social behaviour and its evolution. The sweat bee,Lasioglossum baleicum, is a socially flexible bee capable of producing both solitary and eusocial nests. We demonstrate that within a single nesting aggregation, soil temperatures are a strong predictor of the social structure of nests. Sites with warmer temperatures in the spring have a higher frequency of social nests than cooler sites, perhaps because warmer temperatures provide a longer reproductive window for those nests. To identify the molecular correlates of this behavioural variation, we generated a de novo genome assembly forL. baleicum, and we used transcriptomic profiling to compare adults and developing offspring from eusocial and solitary nests. We find that adult, reproductive females have similar expression profiles regardless of social structure in the nest, but that there are strong differences between reproductive females and workers from social nests. We also find substantial differences in the transcriptomic profiles of stage‐matched pupae from warmer, social‐biased sites compared to cooler, solitary‐biased sites. These transcriptional differences are strongly predictive of adult reproductive state, suggesting that the developmental environment may set the stage for adult behaviours inL. baleicum. Together, our results help to characterize the molecular mechanisms shaping variation in social behaviour and highlight a potential role of environmental tuning during development as a factor shaping adult behaviour and physiology in this socially flexible bee. 
    more » « less