skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Slope‐Aspect Induced Climate Differences Influence How Water Is Exchanged Between the Land and Atmosphere
Abstract Cross‐slope climate differences in the midlatitudes are ecologically important, and impact vegetation‐mediated water balance between the earth surface and the atmosphere. We made high‐resolution in situ observations of air temperature, relative humidity, soil moisture, insolation, and sap velocity observations on 14 Pacific madrone trees (Arbutus menziesii) spanning adjacent north and south slopes at the University of California's Angelo Coast Range Reserve. To understand the cross‐slope response of sap velocity, a proxy for transpiration, to microclimate, we modeled the sap velocity on each slope using a transpiration model driven by ambient environment and parameterized with a Markov Chain Monte Carlo parameter estimation process. The results show that trees on opposing slopes do not follow a shared pattern of physiological response to transpiration drivers. This means that the observed sap velocity differences are not due entirely to observed microclimate differences, but also due to population‐level physiological differences, which indicates acclimation to inhabited microclimate. While our present data set and analytical tools do not identify mechanisms of acclimation, we speculate that differing proportions of sun‐adapted and shade‐adapted leaves, differences in stomatal regulation, and cross‐slope root zone moisture differences could explain some of the observed and modeled differences.  more » « less
Award ID(s):
1331940
PAR ID:
10360683
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
126
Issue:
5
ISSN:
2169-8953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The expansion of an urban tree canopy is a commonly proposed nature-based solution to combat excess urban heat. The influence trees have on urban climates via shading is driven by the morphological characteristics of trees, whereas tree transpiration is predominantly a physiological process dependent on environmental conditions and the built environment. The heterogeneous nature of urban landscapes, unique tree species assemblages, and land management decisions make it difficult to predict the magnitude and direction of cooling by transpiration. In the present article, we synthesize the emerging literature on the mechanistic controls on urban tree transpiration. We present a case study that illustrates the relationship between transpiration (using sap flow data) and urban temperatures. We examine the potential feedbacks among urban canopy, the built environment, and climate with a focus on extreme heat events. Finally, we present modeled data demonstrating the influence of transpiration on temperatures with shifts in canopy extent and irrigation during a heat wave. 
    more » « less
  2. Abstract Trees in residential environments are affected by a unique combination of environmental and anthropogenic factors, including occasional insect outbreaks that are increasing in frequency and severity due to climate change. We studied loblolly pine trees infested by bark beetles in a residential backyard in a southeastern US city. We investigated the responses of tree and stand‐level transpiration to environmental factors (solar radiation, atmospheric vapor pressure deficit, and soil moisture), severe weather events (strong winds and heavy storms), bark beetle infestation, and human actions (insecticide treatments and tree removals). We used constant heat dissipation probes to make continuous sap flux measurements (J0) in tree boles. Over 22 months of the study,J0of trees with confirmed infestation decreased from ~90 to ~60 g cm−2 day−1andJ0of the rest of the trees increased from ~60 to ~80 g cm−2 day−1. One infested tree died, as itsJ0steadily declined from 110 g cm−2 day−1to zero over the course of 2 months, followed by a loss of foliage and visible signs of severe infestation 6 months later.J0was sensitive to variations in incoming solar radiation and atmospheric vapor pressure deficit. In most trees,J0linearly responded to soil water content during drought periods. Yet despite complex dynamics ofJ0variations, plot‐level transpiration at the end of the study was the same as at the beginning due to compensatory increases in tree transpiration rates. This study highlights the intrinsic interplay of environmental, biotic, and anthropogenic factors in residential environments where human actions may directly mediate ecosystem responses to climate. 
    more » « less
  3. The influence of nutrient availability on transpiration is not well understood, in spite of the importance of transpiration to forest water budgets. Soil nutrients have the potential to affect tree water use through indirect effects on leaf area or stomatal conductance. For example, following addition of calcium silicate to a watershed at Hubbard Brook, in New Hampshire, streamflow was reduced for 3 years, which was attributed to a 25% increase in evapotranspiration associated with increased foliar production. The first objective of this study was to quantify the effect of nutrient availability on sap flux density in a nitrogen, phosphorus, and calcium addition experiment in New Hampshire in which tree diameter growth, foliar chemistry, and soil nutrient availability had responded to treatments. We measured sap flux density in American beech ( Fagus grandifolia, Ehr.), red maple ( Acer rubrum L.), sugar maple ( Acer saccharum Marsh.), white birch ( Betula papyrifera Marsh.), or yellow birch (Betula alleghaniensis Britton.) trees, over five years of experiments in five stands distributed across three sites. In 2018, 3 years after a calcium silicate addition, sap flux density averaged 36% higher in trees in the treatment than the control plot, but this effect was not very significant ( p = 0.07). Our second objective was to determine whether this failure to detect effects with greater statistical confidence was due to small effect sizes or high variability among trees. We found that tree-to-tree variability was high, with coefficients of variation averaging 39% within treatment plots. Depending on the species and year of the study, the minimum difference in sap flux density detectable with our observed variability ranged from 46% to 352%, for a simple ANOVA. We analyzed other studies reported in the literature that compared tree water use among species or treatments and found detectable differences ranging from 16% to 78%. Future sap flux density studies could benefit from power analyses to guide sampling intensity. Including pretreatment data, in the case of manipulative studies, would also increase statistical power. 
    more » « less
  4. null (Ed.)
    Eastern redcedar (Juniperus virginiana L., redcedar) encroachment is transitioning the oak-dominated Cross-Timbers of the southern Great Plain of the USA into mixed-species forests. However, it remains unknown how the re-assemblage of tree species in a semiarid to sub-humid climate affects species-specific water use and competition, and ultimately the ecosystem-level water budget. We selected three sites representative of oak, redcedar, and oak and redcedar mixed stands with a similar total basal area (BA) in a Cross-Timbers forest near Stillwater, Oklahoma. Sap flow sensors were installed in a subset of trees in each stand representing the distribution of diameter at breast height (DBH). Sap flow of each selected tree was continuously monitored over a period of 20 months, encompassing two growing seasons between May 2017 and December 2018. Results showed that the mean sap flow density (Sd) of redcedar was usually higher than post oaks (Quercus stellata Wangenh.). A structural equation model showed a significant correlation between Sd and shallow soil moisture for redcedar but not for post oak. At the stand level, the annual water use of the mixed species stand was greater than the redcedar or oak stand of similar total BA. The transition of oak-dominated Cross-Timbers to redcedar and oak mixed forest will increase stand-level transpiration, potentially reducing the water available for runoff or recharge to groundwater. 
    more » « less
  5. Abstract Forests significantly influence regional and global water cycles through transpiration, which is affected by meteorological variables, soil water availability, and stand and site characteristics. Variable retention harvesting (VRH) is a forest management practice in which varying densities of trees, such as 55% and 33%, are retained after thinning or harvesting. These trees can be grouped together or evenly distributed. VRH aims to enhance forest growth, improve biodiversity, preserve ecosystem functions, and generate economic revenue from harvested timber. Application of VRH treatment in forest ecosystems can potentially impact the response of forest transpiration to environmental controls. This study analyzed the impacts of four different VRH treatments on sap flow velocity (SV) in an 83‐year‐old red pine (Pinus resinosa Ait.) plantation forest in the Great Lakes region in Canada. These VRH treatments included 55% aggregated (55A), 55% dispersed (55D), 33% aggregated (33A), and 33% dispersed (33D) basal area retention, and an unharvested control (CN) plot, 1 ha each. Analysis of counterclockwise hysteresis loops between SV and meteorological variables showed larger hysteresis areas between SV and photosynthetically active radiation (PAR) than vapor pressure deficit (VPD) and air temperature (Tair), particularly in clear sky and warm temperatures in the summer. It demonstrated that PAR was the primary control on SV across VRH treatments, followed by VPD andTair. Larger hysteresis loop areas and higher SV values were observed in the CN and 55D treatments, with lower values found in the 55A, 33D, and 33A plots. This suggests that maintaining dispersed retention of 55% basal area (55D) is the optimal forest management practice that can be utilized to enhance transpiration and forest growth. These findings will assist forest managers and other stakeholders to adopt sustainable forest management practices, thereby enhancing forest growth, water use efficiency, and resilience to climate change. Additionally, these practices will contribute to nature‐based climate solutions. 
    more » « less