skip to main content

Title: NAD+/NADH redox alterations reconfigure metabolism and rejuvenate senescent human mesenchymal stem cells in vitro

Human mesenchymal stem cells (hMSCs) promote endogenous tissue regeneration and have become a promising candidate for cell therapy. However, in vitro culture expansion of hMSCs induces a rapid decline of stem cell properties through replicative senescence. Here, we characterize metabolic profiles of hMSCs during expansion. We show that alterations of cellular nicotinamide adenine dinucleotide (NAD + /NADH) redox balance and activity of the Sirtuin (Sirt) family enzymes regulate cellular senescence of hMSCs. Treatment with NAD + precursor nicotinamide increases the intracellular NAD + level and re-balances the NAD + /NADH ratio, with enhanced Sirt-1 activity in hMSCs at high passage, partially restores mitochondrial fitness and rejuvenates senescent hMSCs. By contrast, human fibroblasts exhibit limited senescence as their cellular NAD + /NADH balance is comparatively stable during expansion. These results indicate a potential metabolic and redox connection to replicative senescence in adult stem cells and identify NAD + as a metabolic regulator that distinguishes stem cells from mature cells. This study also suggests potential strategies to maintain cellular homeostasis of hMSCs in clinical applications.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Biology
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Human mesenchymal stem or stromal cells (hMSCs) are known for their potential in regenerative medicine due to their differentiation abilities, secretion of trophic factors, and regulation of immune responses in damaged tissues. Due to the limited quantity of hMSCs typically isolated from bone marrow, other tissue sources, such as adipose tissue-derived mesenchymal stem cells (hASCs), are considered a promising alternative. However, differences have been observed for hASCs in the context of metabolic characteristics and response to in vitro culture stress compared to bone marrow derived hMSCs (BM-hMSCs). In particular, the relationship between metabolic homeostasis and stem cell functions, especially the immune phenotype and immunomodulation of hASCs, remains unknown. This study thoroughly assessed the changes in metabolism, redox cycles, and immune phenotype of hASCs during in vitro expansion. In contrast to BM-hMSCs, hASCs did not respond to culture stress significantly during expansion as limited cellular senescence was observed. Notably, hASCs exhibited the increased secretion of pro-inflammatory cytokines and the decreased secretion of anti-inflammatory cytokines after extended culture expansion. The NAD+/NADH redox cycle and other metabolic characteristics associated with aging were relatively stable, indicating that hASC functional decline may be regulated through an alternative mechanism rather than NAD+/Sirtuin aging pathways as observed in BM-hMSCs. Furthermore, transcriptome analysis by mRNA-sequencing revealed the upregulation of genes for pro-inflammatory cytokines/chemokines and the downregulation of genes for anti-inflammatory cytokines for hASCs at high passage. Proteomics analysis indicated key pathways (e.g., tRNA charging, EIF2 signaling, protein ubiquitination pathway) that may be associated with the immune phenotype shift of hASCs. Together, this study advances our understanding of the metabolism and senescence of hASCs and may offer vital insights for the biomanufacturing of hASCs for clinical use. 
    more » « less
  2. Abstract

    Central metabolism is organised through high‐flux, Nicotinamide Adenine Dinucleotide (NAD+/NADH) and NADP+/NADPH systems operating at near equilibrium. As oxygen is indispensable for aerobic organisms, these systems are also linked to the levels of reactive oxygen species, such as H2O2, and through H2O2to the regulation of macromolecular structures and activities, via kinetically controlled sulphur switches in the redox proteome. Dynamic changes in H2O2production, scavenging and transport, associated with development, growth and responses to the environment are, therefore, linked to the redox state of the cell and regulate cellular function. These basic principles form the ‘redox code’ of cells and were first defined by D. P. Jones and H. Sies in 2015. Here, we apply these principles to plants in which recent studies have shown that they can also explain cell‐to‐cell and even plant‐to‐plant signalling processes. The redox code is, therefore, an integral part of biological systems and can be used to explain multiple processes in plants at the subcellular, cellular, tissue, whole organism and perhaps even community and ecosystem levels. As the environmental conditions on our planet are worsening due to global warming, climate change and increased pollution levels, new studies are needed applying the redox code of plants to these changes.

    more » « less
  3. BACKGROUND Diverse organisms, from archaea and bacteria to plants and humans, use receptor systems to recognize both pathogens and dangerous self-derived or environmentally derived stimuli. These intricate, well-coordinated immune systems, composed of innate and adaptive components, ensure host survival. In the late 20th century, researchers identified the Toll/interleukin-1/resistance gene (TIR) domain as an evolutionarily conserved component of animal and plant innate immune systems. Today, TIR-domain proteins are known to be broadly distributed across the tree of life. The TIR domain was first recognized as an adaptor for the assembly of macromolecular signaling complexes in mammalian innate immune pathways. Work on axon degeneration in animals—as well as on plant, archaeal, and bacterial immune systems—has uncovered additional enzymatic activities for TIR domains. ADVANCES Mammalian axons initiate a self-destruct program upon injury and during disease that is mediated by the sterile alpha and TIR motif containing 1 (SARM1) protein. The SARM1 TIR domain enzymatically consumes the essential metabolic cofactor nicotinamide adenine dinucleotide (NAD + ) to promote axonal death. Identification of the SARM1 NAD + -consuming enzyme (NADase) revealed that TIR domains can function as enzymes. Given the evolutionary conservation of TIR domains, studies investigated whether the SARM1 TIR NADase was also conserved. Indeed, bacteria, archaea, and plant TIR domains possess NADase activity. In prokaryotes, TIR NADase activity is found in an ancient antiphage immune system. In plants, identification of TIR NADase activity and linkage of TIR enzymatic products to downstream signaling components addressed the question of how nucleotide-binding, leucine-rich repeat (NLR) receptors trigger hypersensitive cell death during an immune response. Studies in plants show that their TIR domains can cleave nucleic acids and possess 2′,3′ cyclic adenosine monophosphate (2′,3′-cAMP) and 2′,3′ cyclic guanosine monophosphate (2′,3′-cGMP) synthetase activity that aids cell death programs in plant innate immunity. Thus, TIR domains constitute an ancient family of enzymes that are activated in immune and cell death pathways. OUTLOOK The discovery of TIR-domain enzyme activities carries implications for innate immunity and neurodegeneration. The identification of the SARM1 NADase defined a drug target for a wide number of neurodegenerative diseases that is being exploited in both preclinical and clinical studies. Hyperactive mutations in the SARM1 NADase have been discovered in amyotrophic lateral sclerosis (ALS) patients. Future work will seek to clarify the contribution of the SARM1 axon degeneration pathway to ALS pathogenesis. NAD + biology influences cellular processes from metabolism to DNA repair to aging. How TIR enzymes influence the NAD + metabolome and its associated pathways in bacteria, archaea, plants, and animals will be an exciting area for upcoming investigation. The discovery of the diversity of TIR enzymatic products is revealing signaling pathways across kingdoms. Discovery of TIR enzymatic function in plants and animals may yet inspire studies of enzymatic functions for Toll-like receptors in animals. We anticipate that cross-kingdom studies of TIR-domain function will guide interventions that will span the tree of life, from treating human neurodegenerative disorders and bacterial infections to preventing plant diseases. Conserved TIR-domain enzymatic activity. TIR-domain proteins from prokaryotes and eukaryotes cleave NAD + into nicotinamide (Nam), ADP-ribose (ADPR), cyclic ADP-ribose (cADPR), isomers of cyclic ADP-ribose (2′ or 3′cADPR), and related molecules [e.g., phosphoribosyl adenosine monophosphate (pRib-AMP)]. Plant TIR domains also possess a nuclease activity, can degrade DNA and RNA, and can function as a 2′,3′-cAMP or 2′,3′-cGMP synthetase. TIR enzymatic activity drives cell death and immune pathways across kingdoms. TIR activity can kill cells directly through NAD + depletion or indirectly using enzymatic products as signal molecules. The representative TIR domain structure shown here is Protein Data Bank ID 6O0Q. EDS1, enhanced disease susceptibility 1; ThsA, Thoeris A. 
    more » « less
  4. Abstract Background

    Macrophages are one of the most prevalent subsets of immune cells within the tumor microenvironment and perform a range of functions depending on the cytokines and chemokines released by surrounding cells and tissues. Recent research has revealed that macrophages can exhibit a spectrum of phenotypes, making them highly plastic due to their ability to alter their physiology in response to environmental cues. Recent advances in examining heterogeneous macrophage populations include optical metabolic imaging, such as fluorescence lifetime imaging (FLIM), and multiphoton microscopy. However, the method of detection for these systems is reliant upon the coenzymes NAD(P)H and FAD, which can be affected by factors other than cytoplasmic metabolic changes. In this study, we seek to validate these optical measures of metabolism by comparing optical results to more standard methods of evaluating cellular metabolism, such as extracellular flux assays and the presence of metabolic intermediates.


    Here, we used autofluorescence imaging of endogenous metabolic co-factors via multiphoton microscopy and FLIM in conjunction with oxygen consumption rate and extracellular acidification rate through Seahorse extracellular flux assays to detect changes in cellular metabolism in quiescent and classically activated macrophages in response to cytokine stimulation.


    Based on our Seahorse XFP flux analysis, M0 and M1 macrophages exhibit comparable trends in oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). Autofluorescence imaging of M0 and M1 macrophages was not only able to show acute changes in the optical redox ratio from pre-differentiation (0 hours) to 72 hours post-cytokine differentiation (M0: 0.320 to 0.258 and M1: 0.316 to 0.386), mean NADH lifetime (M0: 1.272 ns to 1.379 ns and M1: 1.265 ns to 1.206 ns), and A1/A2 ratio (M0: 3.452 to ~ 4 and M1: 3.537 to 4.529) but could also detect heterogeneity within each macrophage population.


    Overall, the findings of this study suggest that autofluorescence metabolic imaging could be a reliable technique for longitudinal tracking of immune cell metabolism during activation post-cytokine stimulation.

    more » « less
  5. Osteoporosis is a common bone and metabolic disease that is characterized by bone density loss and microstructural degeneration. Human bone marrow-derived mesenchymal stem cells (hMSCs) are multipotent progenitor cells with the potential to differentiate into various cell types, including osteoblasts, chondrocytes, and adipocytes, which have been utilized extensively in the field of bone tissue engineering and cell-based therapy. Although fluid shear stress plays an important role in bone osteogenic differentiation, the cellular and molecular mechanisms underlying this effect remain poorly understood. Here, a locked nucleic acid (LNA)/DNA nanobiosensor was exploited to monitor mRNA gene expression of hMSCs that were exposed to physiologically relevant fluid shear stress to examine the regulatory role of Notch signaling during osteogenic differentiation. First, the effects of fluid shear stress on cell viability, proliferation, morphology, and osteogenic differentiation were investigated and compared. Our results showed shear stress modulates hMSCs morphology and osteogenic differentiation depending on the applied shear and duration. By incorporating this LNA/DNA nanobiosensor and alkaline phosphatase (ALP) staining, we further investigated the role of Notch signaling in regulating osteogenic differentiation. Pharmacological treatment is applied to disrupt Notch signaling to investigate the mechanisms that govern shear stress induced osteogenic differentiation. Our experimental results provide convincing evidence supporting that physiologically relevant shear stress regulates osteogenic differentiation through Notch signaling. Inhibition of Notch signaling mediates the effects of shear stress on osteogenic differentiation, with reduced ALP enzyme activity and decreased Dll4 mRNA expression. In conclusion, our results will add new information concerning osteogenic differentiation of hMSCs under shear stress and the regulatory role of Notch signaling. Further studies may elucidate the mechanisms underlying the mechanosensitive role of Notch signaling in stem cell differentiation. 
    more » « less