skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Mercury Isotopic Composition of Earth's Mantle and the Use of Mass Independently Fractionated Hg to Test for Recycled Crust
Abstract The element mercury (Hg) can develop large mass‐independent fractionation (MIF) (Δ199Hg) due to photo‐chemical reactions at Earth's surface. This results in globally negative Δ199Hg for terrestrial sub‐aerially‐derived materials and positive Δ199Hg for sub‐aqueously‐derived marine sediments. The mantle composition least affected by crustal recycling is estimated from high‐3He/4He lavas from Samoa and Iceland, providing an average of Δ199Hg = 0.00 ± 0.10, Δ201Hg = −0.02 ± 0.0.09,δ202Hg = −1.7 ± 1.2; 2SD,N = 11. By comparison, a HIMU‐type lava from Tubuai exhibits positive Δ199Hg, consistent with altered oceanic crust in its mantle source. A Samoan (EM2) lava has negative Δ199Hg reflecting incorporation of continental crust materials into its source. Three Pitcairn lavas exhibit positive Δ199Hg which correlate with87Sr/86Sr, consistent with variable proportions of continental (low Δ199Hg and high87Sr/86Sr) and oceanic (high Δ199Hg and low87Sr/86Sr) crustal material in their mantle sources. These observations indicate that MIF signatures offer a powerful tool for examining atmosphere‐deep Earth interactions.  more » « less
Award ID(s):
1900652
PAR ID:
10360772
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
17
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Lavas erupted at hotspot volcanoes provide evidence of mantle heterogeneity. Samoan Island lavas with high87Sr/86Sr (>0.706) typify a mantle source incorporating ancient subducted sediments. To further characterize this source, we target a single high87Sr/86Sr lava from Savai’i Island, Samoa for detailed analyses of87Sr/86Sr and143Nd/144Nd isotopes and major and trace elements on individual magmatic clinopyroxenes. We show the clinopyroxenes exhibit a remarkable range of87Sr/86Sr—including the highest observed in an oceanic hotspot lava—encompassing ~30% of the oceanic mantle’s total variability. These new isotopic data, data from other Samoan lavas, and magma mixing calculations are consistent with clinopyroxene87Sr/86Sr variability resulting from magma mixing between a high silica, high87Sr/86Sr (up to 0.7316) magma, and a low silica, low87Sr/86Sr magma. Results provide insight into the composition of magmas derived from a sediment-infiltrated mantle source and document the fate of sediment recycled into Earth’s mantle. 
    more » « less
  2. Abstract The Icelandic hotspot has erupted basaltic magma with the highest mantle‐derived3He/4He over a period spanning much of the Cenozoic, from the early‐Cenozoic Baffin Island‐West Greenland flood basalt province (49.8RA), to mid‐Miocene lavas in northwest Iceland (40.2 to 47.5RA), to Pleistocene lavas in Iceland's neovolcanic zone (34.3RA). The Baffin Island lavas transited through and potentially assimilated variable amounts of Precambrian continental basement. We use geochemical indicators sensitive to continental crust assimilation (Nb/Th, Ce/Pb, MgO) to identify the least crustally contaminated lavas. Four lavas, identified as “least crustally contaminated,” have high MgO (>15 wt.%), and Nb/Th and Ce/Pb that fall within the mantle range (Nb/Th = 15.6 ± 2.6, Ce/Pb = 24.3 ± 4.3). These lavas have87Sr/86Sr = 0.703008–0.703021,143Nd/144Nd = 0.513094–0.513128,176Hf/177Hf = 0.283265–0.283284,206Pb/204Pb = 17.7560–17.9375,3He/4He up to 39.9RA, and mantle‐like δ18O of 5.03–5.21‰. The radiogenic isotopic compositions of the least crustally contaminated lavas are more geochemically depleted than Iceland high‐3He/4He lavas, a shift that cannot be explained by continental crust assimilation in the Baffin suite. Thus, we argue for the presence oftwogeochemically distinct high‐3He/4He components within the Iceland plume. Additionally, the least crustally contaminated primary melts from Baffin Island‐West Greenland have higher mantle potential temperatures (1510 to 1630 °C) than Siqueiros mid‐ocean ridge basalts (1300 to 1410 °C), which attests to a hot, buoyant plume origin for early Iceland plume lavas. These observations support the contention that the geochemically heterogeneous high‐3He/4He domain is dense, located in the deep mantle, and sampled by only the hottest plumes. 
    more » « less
  3. Abstract Melt inclusions with large, positive Sr anomalies have been described in multiple tectonic settings, and the origins of this unusual geochemical feature are debated. Three origins have been proposed, all involving plagioclase as the source of the elevated Sr: (i) direct assimilation of plagioclase‐rich lithologies, (ii) recycled lower oceanic gabbro in the mantle source, and (iii) shallow‐level diffusive interaction between present day lower oceanic crust (i.e., plagioclase‐bearing lithologies) and the percolating melt. A “ghost plagioclase” signature (i.e., a large, positive Sr anomaly without associated high Al2O3) is present in melt inclusions from Mauna Loa. We present new87Sr/86Sr measurements of individual olivine‐hosted melt inclusions from three Hawaiian volcanoes, Mauna Loa, Loihi, and Koolau. The data set includes a Mauna Loa melt inclusion with the highest reported Sr anomaly (or highest (Sr/Ce)N, which is 7.2) for Hawai'i. All melt inclusions have87Sr/86Sr values within the range reported previously for the lavas from each volcano. Critically, the87Sr/86Sr of the high (Sr/Ce)Nmelt inclusion lies within the narrow range of87Sr/86Sr for Mauna Loa melts that lack high (Sr/Ce)Nsignatures. Therefore, to explain the high (Sr/Ce)Nratio of the ghost plagioclase signature using an ancient recycled gabbro, the gabbro‐infused mantle source would have had to evolve, by chance, to have the same87Sr/86Sr as the source of the Mauna Loa melts that lack a recycled gabbro (ghost plagioclase) signature. Alternatively, shallow‐level diffusive interactions between Mauna Loa plagioclase‐rich cumulates and a percolating mantle‐derived melt provides a simpler explanation for the presence of the high (Sr/Ce)NMauna Loa melts. 
    more » « less
  4. Abstract Young mafic lavas from the East African Western Rift record melting of subcontinental lithospheric mantle that was metasomatically modified by multiple tectonic events. We report new isotope data from monogenetic cinder cones near Bufumbira, Uganda, in the Virunga Volcanic Field:87Sr/86Sr = 0.7059–0.7079,εNd = −6.5 to −1.3,εHf = −6.3 to +0.9,208Pb/204Pb = 40.1–40.7,207Pb/204Pb = 15.68–15.75, and206Pb/204Pb = 19.27–19.45. Olivine phenocrysts from the Bufumbira lavas have3He/4He = 6.0–7.4RA. The isotopic data, in conjunction with major and trace element systematics, indicate that primitive Bufumbira magmas are derived from two different metasomatized lithospheric source domains. Melts generated by lower degrees of melting record greater contributions from ∼1 to 2 Ga isotopically enriched garnet‐amphibole‐phlogopite pyroxenite veins within the lithosphere. As melting progresses, these vein melts become increasingly diluted by melts that originate near the lithosphere/asthenosphere boundary, shifting the isotopic compositions toward the common lithospheric mantle (CLM) proposed by Furman and Graham (1999,https://doi.org/10.1016/s0024-4937(99)00031-6). This ∼450–500 Ma source domain appears to underlie all Western Rift volcanic provinces and is characterized by87Sr/86Sr ∼ 0.705,εNd∼ 0,εHf∼ +1 to +3,206Pb/204Pb ∼ 19.0–19.2,208Pb/204Pb ∼ 39.7, and3He/4He ∼ 7RA. Basal portions of the dense subcontinental lithospheric mantle may become gravitationally unstable and founder into underlying warmer asthenosphere, exposing surfaces where melting of locally heterogeneous veins produces small‐volume, alkaline mafic melts. Mafic lavas from all Western Rift volcanic provinces record mixing between the CLM and locally variable metasomatized source domains, suggesting this style of melt generation is fundamental to the development of magma‐poor rifts. 
    more » « less
  5. Abstract The spatial distribution of the geochemical domains hosting recycled crust and primordial (high‐3He/4He) reservoirs, and how they are linked to mantle convection, are poorly understood. Two continent‐sized seismic anomalies located near the core‐mantle boundary—called the Large Low Shear Wave Velocity Provinces (LLSVPs)—are potential geochemical reservoir hosts. It has been suggested that high‐3He/4He hotspots are spatially confined to the LLSVPs, hotspots sampling recycled continental crust are associated with only one of the LLSVPs, and recycled continental crust shows no relationship with latitude. We reevaluate the links between LLSVPs and isotopic signatures of hotspot lavas using improved mantle flow models including plume conduit advection. While most hotspots with the highest‐3He/4He can indeed be traced to the LLSVP interiors, at least one high‐3He/4He hotspot, Yellowstone, is located outside of the LLSVPs. This suggests high‐3He/4He is not geographically confined to the LLSVPs. Instead, a positive correlation between hotspot buoyancy flux and maximum hotspot3He/4He suggests that it is plume dynamics (i.e., buoyancy), not geography, which determines whether a dense, deep, and possibly widespread high‐3He/4He reservoir is entrained. We also show that plume‐fed EM hotspots (enriched mantle, with low‐143Nd/144Nd), signaling recycled continental crust, are spatially linked to both LLSVPs, and located primarily in the southern hemisphere. Lastly, we confirm that hotspots sampling HIMU (“high‐μ,” or high238U/204Pb) domains are not spatially limited to the LLSVPs. These findings clarify and advance our understanding of deep mantle reservoir distributions, and we discuss how continental and oceanic crust subduction is consistent with the spatial decoupling of EM and HIMU. 
    more » « less