skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Geochemical Constraints on the Origin of Primitive Potassic Lavas in the Eastern Virunga Volcanic Province
Abstract Young mafic lavas from the East African Western Rift record melting of subcontinental lithospheric mantle that was metasomatically modified by multiple tectonic events. We report new isotope data from monogenetic cinder cones near Bufumbira, Uganda, in the Virunga Volcanic Field:87Sr/86Sr = 0.7059–0.7079,εNd = −6.5 to −1.3,εHf = −6.3 to +0.9,208Pb/204Pb = 40.1–40.7,207Pb/204Pb = 15.68–15.75, and206Pb/204Pb = 19.27–19.45. Olivine phenocrysts from the Bufumbira lavas have3He/4He = 6.0–7.4RA. The isotopic data, in conjunction with major and trace element systematics, indicate that primitive Bufumbira magmas are derived from two different metasomatized lithospheric source domains. Melts generated by lower degrees of melting record greater contributions from ∼1 to 2 Ga isotopically enriched garnet‐amphibole‐phlogopite pyroxenite veins within the lithosphere. As melting progresses, these vein melts become increasingly diluted by melts that originate near the lithosphere/asthenosphere boundary, shifting the isotopic compositions toward the common lithospheric mantle (CLM) proposed by Furman and Graham (1999,https://doi.org/10.1016/s0024-4937(99)00031-6). This ∼450–500 Ma source domain appears to underlie all Western Rift volcanic provinces and is characterized by87Sr/86Sr ∼ 0.705,εNd∼ 0,εHf∼ +1 to +3,206Pb/204Pb ∼ 19.0–19.2,208Pb/204Pb ∼ 39.7, and3He/4He ∼ 7RA. Basal portions of the dense subcontinental lithospheric mantle may become gravitationally unstable and founder into underlying warmer asthenosphere, exposing surfaces where melting of locally heterogeneous veins produces small‐volume, alkaline mafic melts. Mafic lavas from all Western Rift volcanic provinces record mixing between the CLM and locally variable metasomatized source domains, suggesting this style of melt generation is fundamental to the development of magma‐poor rifts.  more » « less
Award ID(s):
1753696
PAR ID:
10430939
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
24
Issue:
6
ISSN:
1525-2027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Iceland's oldest silicic rocks provide unique insight into the island's early crustal evolution. We present new zircon U‐Pb ages bolstered with zircon trace element and isotopic compositions, and whole rock Nd, Hf, and Pb isotope compositions, from three silicic magmatic centers—Hrafnsfjörður, Árnes, and Kaldalón—to understand the petrogenesis of large silicic volcanic centers in the northern Westfjords, Iceland. Our data confirm Hrafnsfjörður as the oldest known central volcano in Iceland (∼14 Ma) and establish an older age for Árnes (∼13 Ma) than previously estimated. We also report the first U‐Pb zircon dates from Kaldalón (∼13.5 Ma). Zircon oxygen isotope compositions range from δ18O∼+2 to +4‰ and indicate involvement of a low‐18O component in their source magmas. Hrafnsfjörður zircon Hf (mean sampleεHf∼ +15.3–16.0) and whole rock Hf and Nd (εHf = +14.5 to +15;εNd = +7.9 to +8.1) isotopic compositions are more radiogenic than those from Árnes (zircon sampleεHf∼ +11.8–13; whole rockεHf = +12.8 to +15.1;εNd = +7.3 to +7.7), but Hrafnsfjörður whole rock Pb isotope compositions (208/204Pb = 37.95–37.96;206/204Pb = 18.33–18.35) are less radiogenic than those from Árnes (208/204Pb = 38.34–38.48;206/204Pb = 18.64–18.78). Kaldalón has zircon Hf isotope compositions ofεHf∼+14.8 and 15.5 (sample means). These age and isotopic differences suggest that interaction of rift and plume, and thus the geodynamic evolution of the Westfjords, is complex. Isotopic compositions of Hrafnsfjörður and Árnes support involvement of an enriched mantle (EM)‐like mantle component associated with a pulsing plume that resulted in variable spreading rates and magma fluxes and highlight the heterogeneity of the Icelandic mantle. 
    more » « less
  2. Abstract The Icelandic hotspot has erupted basaltic magma with the highest mantle‐derived3He/4He over a period spanning much of the Cenozoic, from the early‐Cenozoic Baffin Island‐West Greenland flood basalt province (49.8RA), to mid‐Miocene lavas in northwest Iceland (40.2 to 47.5RA), to Pleistocene lavas in Iceland's neovolcanic zone (34.3RA). The Baffin Island lavas transited through and potentially assimilated variable amounts of Precambrian continental basement. We use geochemical indicators sensitive to continental crust assimilation (Nb/Th, Ce/Pb, MgO) to identify the least crustally contaminated lavas. Four lavas, identified as “least crustally contaminated,” have high MgO (>15 wt.%), and Nb/Th and Ce/Pb that fall within the mantle range (Nb/Th = 15.6 ± 2.6, Ce/Pb = 24.3 ± 4.3). These lavas have87Sr/86Sr = 0.703008–0.703021,143Nd/144Nd = 0.513094–0.513128,176Hf/177Hf = 0.283265–0.283284,206Pb/204Pb = 17.7560–17.9375,3He/4He up to 39.9RA, and mantle‐like δ18O of 5.03–5.21‰. The radiogenic isotopic compositions of the least crustally contaminated lavas are more geochemically depleted than Iceland high‐3He/4He lavas, a shift that cannot be explained by continental crust assimilation in the Baffin suite. Thus, we argue for the presence oftwogeochemically distinct high‐3He/4He components within the Iceland plume. Additionally, the least crustally contaminated primary melts from Baffin Island‐West Greenland have higher mantle potential temperatures (1510 to 1630 °C) than Siqueiros mid‐ocean ridge basalts (1300 to 1410 °C), which attests to a hot, buoyant plume origin for early Iceland plume lavas. These observations support the contention that the geochemically heterogeneous high‐3He/4He domain is dense, located in the deep mantle, and sampled by only the hottest plumes. 
    more » « less
  3. Abstract There is a consensus that volcanism along the East African Rift System (EARS) is related to plume activities. However, because of our limited knowledge of the local lithospheric mantle, the dynamics of the plume are poorly constrained by magma chemistry. The Turkana Basin is one of the best places to study plume‐related volcanism because the lithospheric mantle there is unusually thin. New Ar‐Ar geochronology and geochemical data on lavas from western Turkana show that Eocene volcanics have relatively low206Pb/204Pb (<19.1) and high εNd (>3.78). Their relatively high Ba/Rb (35–78) ratios suggest contributions from the shallow lithospheric mantle. Oligo‐Miocene Turkana volcanics have HIMU‐ and EMI‐ type enriched mantle signatures with overall lower Ba/Rb ratios, which is consistent with partial melting of plume material. Pliocene and younger Turkana volcanics have low Ba/Rb and Sr‐Nd‐Pb isotope ratios that resemble those of Ethiopian volcanics with elevated3He/4He ratios. This temporal variation can be reconciled with a layered plume model where an outer layer of ancient recycled oceanic crust and sediment overlies more primitive lower mantle material. Beneath Ethiopia, the outer layer of the plume is either missing or punctured by the delamination of the thicker overlying lithospheric mantle atca.30 Ma, an event that would have facilitated the rapid upwelling of the inner portion of the plume and triggered the Ethiopian flood volcanism. The outer layer of the plume may be thicker in the southern EARS, which could explain the occurrence of young HIMU‐ and EMI‐type volcanics with primordial noble gas signatures. 
    more » « less
  4. Abstract The Payenia region of Argentina (34.5–38°S) is a large Pliocene‐Quaternary volcanic province of basaltic compositions in the Andean Cordillera foothills representing the northernmost extent of back‐arc volcanism in the Andean Southern Volcanic Zone (SVZ). Although the chemical diversity of the Payenia basalts has been characterized previously, the processes and sources responsible for such variation remain controversial. Here, we report new whole‐rock major and trace element concentrations, Sr‐, Nd‐, Hf‐, and Pb‐isotope ratios and high‐precision olivine oxygen‐isotope ratios in a suite of 35 alkaline basalts from Payenia. These lavas have major and trace elements that define a compositional range from arc‐influenced to intraplate signature. Variable crustal contamination and/or recent slab‐derived inputs inadequately account for elemental and isotopic systematics and spatial compositional variations of Payenia lavas. We present a simple forward model indicating that early metasomatism and subsequent melting of the metasomatized subcontinental lithospheric mantle (SCLM) has significantly contributed to the Payenia lava compositional range. Isotopic ingrowth calculations of radiogenic Sr, Nd, Hf, and Pb suggest that the SCLM metasomatism occurred at 50–150 Ma, consistent with the timing of the breakup of Gondwana and the development of the proto‐Pacific Andean arc. Variations in δ18Oolivinevalues from modeled melts indicate that the metasomatism and melting within the SCLM can fractionate oxygen isotopes even when the metasomatizing melt has MORB‐like δ18O values, providing a different explanation for the low‐δ18O signatures observed in continental arc settings. 
    more » « less
  5. Abstract Major- and trace-element data together with Nd and Sr isotopic compositions and 40Ar/39Ar age determinations were obtained for Late Cretaceous and younger volcanic rocks from north-central Colorado, USA, in the Southern Rocky Mountains to assess the sources of mantle-derived melts in a region underlain by thick (≥150 km) continental lithosphere. Trachybasalt to trachyandesite lava flows and volcanic cobbles of the Upper Cretaceous Windy Gap Volcanic Member of the Middle Park Formation have low εNd(t) values from −3.4 to −13, 87Sr/86Sr(t) from ~0.705 to ~0.707, high large ion lithophile element/high field strength element ratios, and low Ta/Th (≤0.2) values. These characteristics are consistent with the production of mafic melts during the Late Cretaceous to early Cenozoic Laramide orogeny through flux melting of asthenosphere above shallowly subducting and dehydrating oceanic lithosphere of the Farallon plate, followed by the interaction of these melts with preexisting, low εNd(t), continental lithospheric mantle during ascent. This scenario requires that asthenospheric melting occurred beneath continental lithosphere as thick as 200 km, in accordance with mantle xenoliths entrained in localized Devonian-age kimberlites. Such depths are consistent with the abundances of heavy rare earth elements (Yb, Sc) in the Laramide volcanic rocks, which require parental melts derived from garnet-bearing mantle source rocks. New 40Ar/39Ar ages from the Rabbit Ears and Elkhead Mountains volcanic fields confirm that mafic magmatism was reestablished in this region ca. 28 Ma after a hiatus of over 30 m.y. and that the locus of volcanism migrated to the west through time. These rocks have εNd(t) and 87Sr/86Sr(t) values equivalent to their older counterparts (−3.5 to −13 and 0.7038–0.7060, respectively), but they have higher average chondrite-normalized La/Yb values (~22 vs. ~10), and, for the Rabbit Ears volcanic field, higher and more variable Ta/Th values (0.29–0.43). The latter are general characteristics of all other post–40 Ma volcanic rocks in north-central Colorado for which literature data are available. Transitions from low to intermediate Ta/Th mafic volcanism occurred diachronously across southwest North America and are interpreted to have been a consequence of melting of continental lithospheric mantle previously metasomatized by aqueous fluids derived from the underthrusted Farallon plate. Melting occurred as remnants of the Farallon plate were removed and the continental lithospheric mantle was conductively heated by upwelling asthenosphere. A similar model can be applied to post–40 Ma magmatism in north-central Colorado, with periodic, east to west, removal of stranded remnants of the Farallon plate from the base of the continental lithospheric mantle accounting for the production, and western migration, of volcanism. The estimated depth of the lithosphere-asthenosphere boundary in north-central Colorado (~150 km) indicates that the lithosphere remains too thick to allow widespread melting of upwelling asthenosphere even after lithospheric thinning in the Cenozoic. The preservation of thick continental lithospheric mantle may account for the absence of oceanic-island basalt–like basaltic volcanism (high Ta/Th values of ~1 and εNd[t] > 0), in contrast to areas of southwest North America that experienced larger-magnitude extension and lithosphere thinning, where oceanic-island basalt–like late Cenozoic basalts are common. 
    more » « less