skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Advanced Bulk Optical Models Linking the Backscattering and Microphysical Properties of Mineral Dust Aerosol
Abstract Sensitivities of the backscattering properties to the microphysical properties (in particular, size and shape) of mineral dust aerosols are examined based on TAMUdust2020, a comprehensive single‐scattering property database of irregular aerosol particles. We develop the bulk mineral dust particle models based on size‐resolved particle ensembles with randomly distorted shapes and spectrally resolved complex refractive indices, which are constrained by using in situ observations reported in the literature. The light detection and ranging (lidar) ratio is more sensitive to particle shape than particle size, while the depolarization ratio depends strongly on particle size. The simulated bulk backscattering properties (i.e., the lidar ratio and the depolarization ratio) of typical mineral dust particles with effective radii of 0.5–3 µm are reasonably consistent with lidar observations made during several field campaigns. The present dust bulk optical property models are applicable to lidar‐based remote sensing of dust aerosol properties.  more » « less
Award ID(s):
1826936
PAR ID:
10360776
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
17
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Most global aerosol models approximate dust as sphericalparticles, whereas most remote sensing retrieval algorithms approximate dust as spheroidal particles with a shape distribution that conflicts withmeasurements. These inconsistent and inaccurate shape assumptions generatebiases in dust single-scattering properties. Here, we obtain dustsingle-scattering properties by approximating dust as triaxial ellipsoidalparticles with observationally constrained shape distributions. We findthat, relative to the ellipsoidal dust optics obtained here, the sphericaldust optics used in most aerosol models underestimate dust single-scattering albedo, mass extinction efficiency, and asymmetry parameter for almost all dust sizes in both the shortwave and longwave spectra. We further find that the ellipsoidal dust optics are in substantially better agreement with observations of the scattering matrix and linear depolarization ratio than the spheroidal dust optics used in most retrieval algorithms. However, relative to observations, the ellipsoidal dust optics overestimate the lidar ratio by underestimating the backscattering intensity by a factor of ∼2. This occurs largely because the computational method used to simulate ellipsoidal dust optics (i.e., the improved geometric optics method) underestimates the backscattering intensity by a factor of ∼2 relative to other computational methods (e.g., the physical geometric optics method). We conclude that the ellipsoidal dust optics with observationally constrained shape distributions can help improve global aerosol models and possibly remote sensing retrieval algorithms that do not use the backscattering signal. 
    more » « less
  2. Abstract. The lidar backscattering properties of Asian dust particles, namely the lidar ratio (S) and backscattering depolarization ratio (δ), were studied using a discrete dipole approximation (DDA) model. The three-dimensional morphology of the dust particles was reconstructed in fine detail using the focused ion beam (FIB) tomography technique. An index based on the symmetry of the scattering matrix was developed to assess the convergence of random orientation computation using DDA. Both S and δ exhibit an asymptotic trend with dust particle size: the S initially decreases, while the δ increases with size, before both approach their asymptotic values. The lidar properties were found to have statistically insignificant dependence on effective sphericity. The presence of strongly absorbing minerals, such as magnetite, can greatly reduce the dust's single-scattering albedo and δ. Utilizing the robust asymptotic trend behavior, two parameterization schemes were developed: one to estimate the δ of a single dust particle given its size and the other to estimate the δ of dust particles with a lognormal particle size distribution given the effective radius. The parameterization scheme was compared with results based on the TAMUdust2020 database, showing hexahedrons to reasonably represent realistic geometries with similar physical properties. 
    more » « less
  3. Abstract. Scattering codes are used to study the optical properties of polar stratospheric clouds (PSCs). Particle backscattering and depolarization coefficients can be computed with available scattering codes once the particle size distribution (PSD) is known and a suitable refractive index is assumed. However, PSCs often appear as external mixtures of supercooled ternary solution (STS) droplets, solid nitric acid trihydrate (NAT) and possibly ice particles, making the assumption of a single refractive index and a single morphology to model the scatterers questionable.Here we consider a set of 15 coincident measurements of PSCs above McMurdo Station, Antarctica, using ground-based lidar, a balloon-borne optical particle counter (OPC) and in situ observations taken by a laser backscattersonde and OPC during four balloon stratospheric flights from Kiruna, Sweden. This unique dataset of microphysical and optical observations allows us to test the performances of optical scattering models when both spherical and aspherical scatterers of different composition and, possibly, shapes are present. We consider particles as STS if their radius is below a certain threshold value Rth and NAT or possibly ice if it is above it. The refractive indices are assumed known from the literature. Mie scattering is used for the STS, assumed spherical. Scattering from NAT particles, considered spheroids of different aspect ratio (AR), is treated with T-matrix results where applicable. The geometric-optics–integral-equation approach is used whenever the particle size parameter is too large to allow for a convergence of the T-matrix method.The parameters Rth and AR of our model have been varied between 0.1 and 2 µm and between 0.3 and 3, respectively, and the calculated backscattering coefficient and depolarization were compared with the observed ones. The best agreement was found for Rth between 0.5 and 0.8 µm and for AR less than 0.55 and greater than 1.5.To further constrain the variability of AR within the identified intervals, we have sought an agreement with the experimental data by varying AR on a case-by-case basis and further optimizing the agreement by a proper choice of AR smaller than 0.55 and greater than 1.5 and Rth within the interval 0.5 and 0.8 µm. The ARs identified in this way cluster around the values 0.5 and 2.5.The comparison of the calculations with the measurements is presented and discussed. The results of this work help to set limits to the variability of the dimensions and asphericity of PSC solid particles, within the limits of applicability of our model based on the T-matrix theory of scattering and on assumptions on a common particle shape in a PSD and a common threshold radius for all the PSDs. 
    more » « less
  4. Abstract Macroscopic stratospheric aerosol properties such as surface area density (SAD) and volume density (VD) are required by modern chemistry climate models. These quantities are in continuous need of validation by observations. Direct observation of these parameters is not possible, but they can be derived from optical particle counters (OPCs) which provide concentration (number density) and size distributions of aerosol particles, and possibly from ground‐based and satellite‐borne lidar observations of particle backscatter coefficients and aerosol type. When such measurements are obtained simultaneously by OPCs and lidars, they can be used to calculate backscatter and extinction coefficients, as well as SAD and VD. Empirical relations can thus be derived between particle backscatter coefficient, extinction coefficient, and SAD and VD for a variety of aerosols (desert dust, maritime aerosols, stratospheric aerosols) and be used to approximate SAD and VD from lidar measurements. Here we apply this scheme to coincident measurements of polar stratospheric clouds above McMurdo Station, Antarctica, by ground‐based lidar and balloon‐borne OPCs. The relationships derived from these measurements will provide a means to obtain values of SAD and VD for supercooled ternary solutions (STS) and nitric acid trihydrate (NAT) PSCs from the backscatter coefficients measured by lidar. Coincident lidar and OPC measurements provided 15 profile comparisons. Empirical expressions of SAD and VD as a function of particle backscatter coefficient,β, were calculated from fits of the form log(SAD/VD) = A + Blog(β) usingβfrom the lidar and SAD/VD from the OPC. The PSCs were classified as STS and NAT mixtures, ice being absent. 
    more » « less
  5. Airborne mineral dust significantly influences Earth’s climate through perturbing Earth’s radiation budget, modulating cloud formation and microphysical properties, and fertilizing the biosphere. Recent field campaigns have revealed substantially more coarse-mode dust particles in the atmosphere than previously recognized, yet current satellite retrievals and climate models inadequately represent these particles. This study presents a novel retrieval algorithm for dust aerosol optical depth at 10 μm (AOD10μm) and effective diameter (Deff) using Moderate Resolution Imaging Spectroradiometer (MODIS) thermal infrared (TIR) observations over global land and ocean. Building upon the previous synergistic approach for MODIS and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), we improve the retrieval from CALIOP-track-limited coverage to full-swath MODIS observations at 10-km resolution over both ocean and land surfaces. The retrieval improvements include: (1) application of climatological CALIOP dust vertical profiles (2007–2017) to constrain dust vertical distribution for off-CALIOP-track pixels; (2) the improved optimization method to effectively handle nonmonotonic cost functions arising from temperature inversions within the Saharan Air Layer; and (3) extension to land surfaces through incorporation of MODIS-retrieved surface emissivity and ERA5 reanalysis data. Validation against coarse-mode AOD from global AERONET (N = 4703) and MAN (N = 1673) observations yields R = 0.82 and 0.85 for AOD10μm, with retrieval uncertainty characterized as ε = 15 % × AOD + 0.04. The retrieved Deff demonstrates excellent agreement with in-situ measurements collected from 24 field campaigns around the globe (R = 0.84, MBE = 0.23 μm, RMSE = 0.73 μm), capturing the particle size variation from near-source regions (Deff = 7–8 μm) to long-range transport (Deff = 3–5 μm). Case studies of dust events over the Namibian coast and trans-Atlantic corridor demonstrate the retrieval’s capability to resolve episodic dust properties and size-dependent deposition during transport. This improved retrieval addresses the critical observational gap for coarse and super-coarse dust particles (D > 5 μm), providing essential constraints for dust life cycle studies and climate model evaluation. 
    more » « less