skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Diurnal Cycles of Synthetic Microwave Sounding Lower-Stratospheric Temperatures from Radio Occultation Observations, Reanalysis, and Model Simulations
Abstract

An observationally based global climatology of the temperature diurnal cycle in the lower stratosphere is derived from 11 different satellites with global positioning system–radio occultation (GPS-RO) measurements from 2006 to 2020. Methods used in our analysis allow for accurate characterization of global stratospheric temperature diurnal cycles, even in the high latitudes where the diurnal signal is small but longer time-scale variability is large. A climatology of the synthetic Microwave Sounding Unit (MSU) and Advanced MSU (AMSU) Temperature in the Lower Stratosphere (TLS) is presented to assess the accuracy of diurnal cycle climatologies for the MSU and AMSU TLS observations, which have traditionally been generated by model data. The TLS diurnal ranges are typically less than 0.4 K in all latitude bands and seasons investigated. It is shown that the diurnal range (maximum minus minimum temperature) of TLS is largest over Southern Hemisphere tropical land in the boreal winter season, indicating the important role of deep convection. The range, phase, and seasonality of the TLS diurnal cycle are generally well captured by the WACCM6 simulation and ERA5 dataset. We also present an observationally based diurnal cycle climatology of temperature profiles from 300 to 10 hPa for various latitude bands and seasons and compare the ERA5 data with the observations.

 
more » « less
Award ID(s):
1821437
PAR ID:
10360971
Author(s) / Creator(s):
 ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Atmospheric and Oceanic Technology
Volume:
38
Issue:
12
ISSN:
0739-0572
Format(s):
Medium: X Size: p. 2045-2059
Size(s):
p. 2045-2059
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Stratosphere‐Troposphere exchange (STE) of air mass and ozone in ERA5 and Modern Era Retrospective analysis for Research and Application, version 2 (MERRA2) reanalyses from 1980 to 2022 are investigated on their seasonal cycle, annual‐mean climatology, and monthly anomalies smoothed using a 1‐year Lanczos low‐pass filter. We employ a lowermost stratosphere mass budget approach with dynamic isentropic surfaces fitted to tropical tropopause as the upper boundary of lowermost stratosphere. The annual‐mean ozone STEs over the NH extratropics, SH extratropics, tropics, extratropics, and globe in ERA5 are −342, −239, 201, −581, and −380 Tg year−1, respectively, versus −305, −224, 168, −529, −361 Tg year−1from MERRA2. The annual‐mean global ozone STE difference between ERA5 and MERRA2 is dominated by the diabatic heating difference, partly compensated by the ozone concentration difference. There are about 40% (−40%) differences between ERA5 and MERRA2 in global ozone STEs in boreal summer (autumn), mainly due to the difference in seasonal breathing of the lowermost stratosphere ozone mass between reanalyses. The correlation coefficient between ERA5 and MERRA2 global ozone mass STE monthly anomalies is 0.57 and thus ERA5 and MERRA2 can only explain each other's variance by 33%. Multiple linear regression analysis shows that El Niño–Southern Oscillation, quasi‐biennial oscillation, and Brewer‐Dobson circulation explain the variance in the ERA5 (MERRA2) global ozone STE monthly anomalies by 17.3 (5.0), 5.4 (7.2), and 1.0 (3.1)%, respectively. The volcanic aerosol impacts on ozone STEs from ERA5 and MERRA2 have opposite signs and thus are inconclusive. Cautions are therefore needed when using ERA5 and MERRA2 to investigate the STE seasonal cycle and interannual variability.

     
    more » « less
  2. Abstract

    The Tibetan Plateau is regarded as the Earth's Third Pole, which is the source region of several major rivers that impact more 20% the world population. This high‐altitude region is reported to have been undergoing much greater rate of weather changes under global warming, but the existing reanalysis products are inadequate for depicting the state of the atmosphere, particularly with regard to the amount of precipitation and its diurnal cycle. An ensemble Kalman filter (EnKF) data assimilation system based on the limited‐area Weather Research and Forecasting (WRF) model was evaluated for use in developing a regional reanalysis over the Tibetan Plateau and the surrounding regions. A 3‐month prototype reanalysis over the summer months (June−August) of 2015 using WRF‐EnKF at a 30‐km grid spacing to assimilate nonradiance observations from the Global Telecommunications System was developed and evaluated against independent sounding and satellite observations in comparison to the ERA‐Interim and fifth European Centre for Medium‐Range Weather Forecasts Reanalysis (ERA5) global reanalysis. Results showed that both the posterior analysis and the subsequent 6‐ to 12‐hr WRF forecasts of the prototype regional reanalysis compared favorably with independent sounding observations, satellite‐based precipitation versus those from ERA‐Interim and ERA5 during the same period. In particular, the prototype regional reanalysis had clear advantages over the global reanalyses of ERA‐Interim and ERA5 in the analysis accuracy of atmospheric humidity, as well as in the subsequent downscale‐simulated precipitation intensity, spatial distribution, diurnal evolution, and extreme occurrence.

     
    more » « less
  3. Monthly-mean data of ERA-Interim reanalysis, precipitation, outgoing longwave radiation (OLR) and sea surface temperature(SST) are investigated for 40 years (1979-2018) to reveal the modulation of the global monsoon systems by the equatorial quasi-biennial oscillation (QBO), focusing only on the neutral El Niño-Southern Oscillation (ENSO) periods (in total 374 months). First, the climatology of the global monsoon systems is viewed with longitude-latitude plots of the precipitation, its proxies and lower tropospheric circulations for the annual mean and two solstice seasons, together with the composite differences between the two seasons. In addition to seasonal variations of Intertropical Convergence Zones (ITCZs), several regional monsoon systems are well identified with an anti-phase of the annual cycle between the two hemispheres. Precipitation-related quantities (OLR and specific humidity), surface conditions [i.e., mean sea level pressure (MSLP) and SST] and circulation fields related to moist convection systems show fundamental features of the global monsoon systems. After introducing eight QBO phases based on the leading two principal components of the zonal-mean zonal wind variations in the equatorial lower-stratosphere, the statistical significance of the composite difference in the precipitation and tropospheric circulation is evaluated for the opposite QBO phases. The composite differences show significant modulations in some regional monsoon systems, dominated by zonally asymmetric components, with the largest magnitudes for specific QBO-phases corresponding to traditional indices of the equatorial zonal-mean zonal wind at 20 and 50 hPa. Along the equator, significant QBO influence is characterized by the modulation of the Walker circulation over the western Pacific. In middle latitudes during boreal summer, for a specific QBO-phase, statistically significant modulation of low-pressure cyclonic perturbation is obtained over the Northern-Hemisphere western Pacific Ocean associated with statistically significant features of heavier precipitation over the eastern side of the cyclonic perturbation and the opposite lighter precipitation over the western side. During boreal winter, similar significant low-pressure cyclonic perturbations were found over the Northern-Hemisphere eastern Pacific and Atlantic Oceans for specific phases.

     
    more » « less
  4. Abstract

    Tropical waves play an important role in driving the quasi‐biennial oscillation of zonal winds in the tropical stratosphere. In our study we analyze these waves based on temperature observations from the 2021–2022 Strateole‐2 campaign when the Reel‐down Atmospheric Temperature Sensor (RATS) was successfully deployed for the first time. RATS provides long‐duration, continuous and simultaneous high‐resolution temperature observations at two altitudes (balloon float level and 200 m below) allowing for an analysis of vertical wavelengths. This separation distance was chosen to focus on waves near the resolution limit of reanalyses. Here, we found tropical waves with periods between about 6 hr and 2 days, with vertical wavelengths between 1.5 and 5 km, respectively. Comparing our results to Fifth generation European Centre for Medium‐Range Weather Forecasts (ERA5) reanalyses we found good agreement for waves with a period longer than 1 day. However, the ERA5 amplitudes of higher‐frequency waves are under‐estimated, and the temporal evolution of most wave packets differs from the observations.

     
    more » « less
  5. Abstract

    Extreme heat such as that seen in the United States and Europe in summer 2022 can have significant impacts on human health and infrastructure. The Occupational Safety and Health Administration (OSHA) and the U.S. Army use wet-bulb globe temperature (WBGT) to quantify the impact of heat on workers and inform decisions on workload. WBGT is a weighted average of air temperature, natural wet-bulb temperature, and black globe temperature. A local hourly, daily, and monthly WBGT climatology will allow those planning outdoor work to minimize the likelihood of heat-related disruptions. In this study, WBGT is calculated from the ERA5 reanalysis and is validated by the Oklahoma Mesonet and found to be adequate. Two common methods of calculating WBGT from meteorological observations are compared. The Liljegren method has a larger diurnal cycle than the Dimiceli method, with a peak WBGT about 1°F higher. The high- and extreme-risk categories in the southern U.S. Great Plains (USGP) have increased from 5 days per year to 15 days from 1960 to 2020. Additionally, the largest increases in WBGT are occurring during DJF, potentially lengthening the warm season in the future. Heat wave definitions based on maximum, minimum, and mean WBGT are used to calculate heat wave characteristics and trends with the largest number of heat waves occurring in the southern USGP. Further, the number of heat waves is generally increasing across the domain. This study shows that heat wave days based on minimum WBGT have increased significantly which could have important impacts on human heat stress recovery.

     
    more » « less