We present a broad-band map of polarized diffuse emission at 167–198 MHz developed from data from the Murchison Widefield Array (MWA). The map is designed to improve visibility simulation and precision calibration for 21 cm Epoch of Reionization (EoR) experiments. It covers a large swath – 11 000 sq. deg. – of the Southern hemisphere sky in all four Stokes parameters and captures emission on angular scales of 1–9°. The band-averaged diffuse structure is pre-dominantly unpolarized but has significant linearly polarized structure near RA = 0 h. We evaluate the accuracy of the map by combining it with the GLEAM catalogue and simulating an observation from the MWA, demonstrating that the accuracy of the short baselines (6.1–50 wavelengths) now approaches the accuracy of the longer baselines typically used for EoR calibration. We discuss how to use the map for visibility simulation for a variety of interferometric arrays. The map has potential to improve calibration accuracy for experiments such as the Hydrogen Epoch of Reionization Array and the forthcoming Square Kilometre Array as well as the MWA.
more » « less- PAR ID:
- 10361090
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 510
- Issue:
- 2
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- p. 2011-2024
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)ABSTRACT The 21 cm hyperfine transition of neutral hydrogen offers a promising probe of the large-scale structure of the universe before and during the Epoch of Reionization (EoR), when the first ionizing sources formed. Bright radio emission from foreground sources remains the biggest obstacle to detecting the faint 21 cm signal. However, the expected smoothness of foreground power leaves a clean window in Fourier space where the EoR signal can potentially be seen over thermal noise. Though the boundary of this window is well defined in principle, spectral structure in foreground sources, instrumental chromaticity, and choice of spectral weighting in analysis all affect how much foreground power spills over into the EoR window. In this paper, we run a suite of numerical simulations of wide-field visibility measurements, with a variety of diffuse foreground models and instrument configurations, and measure the extent of contaminated Fourier modes in the EoR window using a delay-transform approach to estimate power spectra. We also test these effects with a model of the Hydrogen Epoch of Reionization Array (HERA) antenna beam generated from electromagnetic simulations, to take into account further chromatic effects in the real instrument. We find that foreground power spillover is dominated by the so-called pitchfork effect, in which diffuse foreground power is brightened near the horizon due to the shortening of baselines. As a result, the extent of contaminated modes in the EoR window is largely constant over time, except when the Galaxy is near the pointing centre.more » « less
-
ABSTRACT Radio interferometers aiming to measure the power spectrum of the redshifted 21 cm line during the Epoch of Reionization (EoR) need to achieve an unprecedented dynamic range to separate the weak signal from overwhelming foreground emissions. Calibration inaccuracies can compromise the sensitivity of these measurements to the effect that a detection of the EoR is precluded. An alternative to standard analysis techniques makes use of the closure phase, which allows one to bypass antenna-based direction-independent calibration. Similarly to standard approaches, we use a delay spectrum technique to search for the EoR signal. Using 94 nights of data observed with Phase I of the Hydrogen Epoch of Reionization Array (HERA), we place approximate constraints on the 21 cm power spectrum at z = 7.7. We find at 95 per cent confidence that the 21 cm EoR brightness temperature is ≤(372)2 ‘pseudo’ mK2 at 1.14 ‘pseudo’ h Mpc−1, where the ‘pseudo’ emphasizes that these limits are to be interpreted as approximations to the actual distance scales and brightness temperatures. Using a fiducial EoR model, we demonstrate the feasibility of detecting the EoR with the full array. Compared to standard methods, the closure phase processing is relatively simple, thereby providing an important independent check on results derived using visibility intensities, or related.
-
Abstract The key to detecting neutral hydrogen during the epoch of reionization (EoR) is to separate the cosmological signal from the dominating foreground radiation. We developed direct optimal mapping (DOM) to map interferometric visibilities; it contains only linear operations, with full knowledge of point spread functions from visibilities to images. Here, we demonstrate a fast Fourier transform-based image power spectrum and its window functions computed from the DOM images. We use noiseless simulation, based on the Hydrogen Epoch of Reionization Array Phase I configuration, to study the image power spectrum properties. The window functions show <10−11of the integrated power leaks from the foreground-dominated region into the EoR window; the 2D and 1D power spectra also verify the separation between the foregrounds and the EoR.
-
Foregrounds with polarization states that are not smooth functions of frequency present a challenge to HI Epoch of Reionization (EoR) power spectrum measurements if they are not cleanly separated from the desired Stokes I signal. The intrinsic polarization impurity of an antenna's electromagnetic response limits the degree to which components of the polarization state on the sky can be separated from one another, leading to the possibility that this frequency structure could be confused for HI emission. We investigate the potential of Faraday rotation by the Earth's ionosphere to provide a mechanism for both mitigation of, and systematic tests for, this contamination. Specifically, we consider the delay power spectrum estimator, which relies on the expectation that foregrounds will be separated from the cosmological signal by a clearly demarcated boundary in Fourier space, and is being used by the Hydrogen Epoch of Reionization Array (HERA) experiment. Through simulations of visibility measurements which include the ionospheric Faraday rotation calculated from real historical ionospheric plasma density data, we find that the incoherent averaging of the polarization state over repeated observations of the sky may attenuate polarization leakage in the power spectrum by a factor of 10 or more. Additionally, this effect provides a way to test for the presence of polarized foreground contamination in the EoR power spectrum estimate.more » « less
-
null (Ed.)Abstract Precise instrumental calibration is of crucial importance to 21-cm cosmology experiments. The Murchison Widefield Array’s (MWA) Phase II compact configuration offers us opportunities for both redundant calibration and sky-based calibration algorithms; using the two in tandem is a potential approach to mitigate calibration errors caused by inaccurate sky models. The MWA Epoch of Reionization (EoR) experiment targets three patches of the sky (dubbed EoR0, EoR1, and EoR2) with deep observations. Previous work in Li et al. (2018) and (2019) studied the effect of tandem calibration on the EoR0 field and found that it yielded no significant improvement in the power spectrum (PS) over sky-based calibration alone. In this work, we apply similar techniques to the EoR1 field and find a distinct result: the improvements in the PS from tandem calibration are significant. To understand this result, we analyse both the calibration solutions themselves and the effects on the PS over three nights of EoR1 observations. We conclude that the presence of the bright radio galaxy Fornax A in EoR1 degrades the performance of sky-based calibration, which in turn enables redundant calibration to have a larger impact. These results suggest that redundant calibration can indeed mitigate some level of model incompleteness error.more » « less