Abstract In the Korteweg–de Vries equation (KdV) context, we put forward a continuous version of the binary Darboux transformation (aka the double commutation method). Our approach is based on the Riemann–Hilbert problem and yields a new explicit formula for perturbation of the negative spectrum of a wide class of step‐type potentials without changing the rest of the scattering data. This extends the previously known formulas for inserting/removing finitely many bound states to arbitrary sets of negative spectrum of arbitrary nature. In the KdV context, our method offers same benefits as the classical binary Darboux transformation does.
more »
« less
The binary Darboux transformation revisited and KdV solitons on arbitrary short‐range backgrounds
Abstract In the KdV context, we revisit the classical Darboux transformation in the framework of the vector Riemann–Hilbert problem. This readily yields a version of the binary Darboux transformation providing a short‐cut to explicit formulas for solitons traveling on a wide range of background solutions. Our approach also links the binary Darboux transformation and the double commutation method.
more »
« less
- Award ID(s):
- 2009980
- PAR ID:
- 10361295
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Studies in Applied Mathematics
- Volume:
- 148
- Issue:
- 1
- ISSN:
- 0022-2526
- Page Range / eLocation ID:
- p. 141-153
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We construct the multi‐breather solutions of the focusing nonlinear Schrödinger equation (NLSE) on the background of elliptic functions by the Darboux transformation, and express them in terms of the determinant of theta functions. The dynamics of the breathers in the presence of various kinds of backgrounds such as dn, cn, and nontrivial phase‐modulating elliptic solutions are presented, and their behaviors dependent on the effect of backgrounds are elucidated. We also determine the asymptotic behaviors for the multibreather solutions with different velocities in the limit, where the solution in the neighborhood of each breather tends to the simple one‐breather solution. Furthermore, we exactly solve the linearized NLSE using the squared eigenfunction and determine the unstable spectra for elliptic function background. By using them, the Akhmediev breathers arising from these modulational instabilities are plotted and their dynamics are revealed. Finally, we provide the rogue wave and higher order rogue wave solutions by taking the special limit of the breather solutions at branch points and the generalized Darboux transformation. The resulting dynamics of the rogue waves involves rich phenomena, depending on the choice of the background and possessing different velocities relative to the background. We also provide an example of the multi‐ and higher order rogue wave solution.more » « less
-
A formulation of Darboux transformations is proposed for integrable couplings, based on non-semisimple matrix Lie algebras. Applications to a kind of integrable couplings of the AKNS equations are made, along with an explicit formula for the associated Bäcklund transformation. Exact one-soliton-like solutions are computed for the integrable couplings of the second- and third-order AKNS equations, and a type of reduction is created to generate integrable couplings and their one-soliton-like solutions for the NLS and MKdV equations.more » « less
-
Abstract Using the Darboux transformation for the Korteweg–de Vries equation, we construct and analyze exact solutions describing the interaction of a solitary wave and a traveling cnoidal wave. Due to their unsteady, wavepacket-like character, these wave patterns are referred to as breathers. Both elevation (bright) and depression (dark) breather solutions are obtained. The nonlinear dispersion relations demonstrate that the bright (dark) breathers propagate faster (slower) than the background cnoidal wave. Two-soliton solutions are obtained in the limit of degeneration of the cnoidal wave. In the small amplitude regime, the dark breathers are accurately approximated by dark soliton solutions of the nonlinear Schrödinger equation. These results provide insight into recent experiments on soliton-dispersive shock wave interactions and soliton gases.more » « less
-
Abstract Up to the third-order rogue wave solutions of the Sasa–Satsuma (SS) equation are derived based on the Hirota’s bilinear method and Kadomtsev–Petviashvili hierarchy reduction method. They are expressed explicitly by rational functions with both the numerator and denominator being the determinants of even order. Four types of intrinsic structures are recognized according to the number of zero-amplitude points. The first- and second-order rogue wave solutions agree with the solutions obtained so far by the Darboux transformation. In spite of the very complicated solution form compared with the ones of many other integrable equations, the third-order rogue waves exhibit two configurations: either a triangle or a distorted pentagon. Both the types and configurations of the third-order rogue waves are determined by different choices of free parameters. As the nonlinear Schrödinger equation is a limiting case of the SS equation, it is shown that the degeneration of the first-order rogue wave of the SS equation converges to the Peregrine soliton.more » « less
An official website of the United States government
