skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: Multi‐breather and high‐order rogue waves for the nonlinear Schrödinger equation on the elliptic function background

We construct the multi‐breather solutions of the focusing nonlinear Schrödinger equation (NLSE) on the background of elliptic functions by the Darboux transformation, and express them in terms of the determinant of theta functions. The dynamics of the breathers in the presence of various kinds of backgrounds such as dn, cn, and nontrivial phase‐modulating elliptic solutions are presented, and their behaviors dependent on the effect of backgrounds are elucidated. We also determine the asymptotic behaviors for the multibreather solutions with different velocities in the limit, where the solution in the neighborhood of each breather tends to the simple one‐breather solution. Furthermore, we exactly solve the linearized NLSE using the squared eigenfunction and determine the unstable spectra for elliptic function background. By using them, the Akhmediev breathers arising from these modulational instabilities are plotted and their dynamics are revealed. Finally, we provide the rogue wave and higher order rogue wave solutions by taking the special limit of the breather solutions at branch points and the generalized Darboux transformation. The resulting dynamics of the rogue waves involves rich phenomena, depending on the choice of the background and possessing different velocities relative to the background. We also provide an example of the multi‐ and higher order rogue wave solution.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Studies in Applied Mathematics
Page Range / eLocation ID:
p. 46-101
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we are concerned with a semi-discrete complex short-pulse (sdCSP) equation of both focusing and defocusing types, which can be viewed as an analogue to the Ablowitz–Ladik lattice in the ultra-short-pulse regime. By using a generalized Darboux transformation method, various soliton solutions to this newly integrable semi-discrete equation are studied with both zero and non-zero boundary conditions. To be specific, for the focusing sdCSP equation, the multi-bright solution (zero boundary conditions), multi-breather and high-order rogue wave solutions (non-zero boundary conditions) are derived, while for the defocusing sdCSP equation with non-zero boundary conditions, the multi-dark soliton solution is constructed. We further show that, in the continuous limit, all the solutions obtained converge to the ones for its original CSP equation (Ling et al . 2016 Physica D 327 , 13–29 ( doi:10.1016/j.physd.2016.03.012 ); Feng et al . 2016 Phys. Rev. E 93 , 052227 ( doi:10.1103/PhysRevE.93.052227 )). 
    more » « less
  2. Abstract Using the Darboux transformation for the Korteweg–de Vries equation, we construct and analyze exact solutions describing the interaction of a solitary wave and a traveling cnoidal wave. Due to their unsteady, wavepacket-like character, these wave patterns are referred to as breathers. Both elevation (bright) and depression (dark) breather solutions are obtained. The nonlinear dispersion relations demonstrate that the bright (dark) breathers propagate faster (slower) than the background cnoidal wave. Two-soliton solutions are obtained in the limit of degeneration of the cnoidal wave. In the small amplitude regime, the dark breathers are accurately approximated by dark soliton solutions of the nonlinear Schrödinger equation. These results provide insight into recent experiments on soliton-dispersive shock wave interactions and soliton gases. 
    more » « less
  3. Abstract Up to the third-order rogue wave solutions of the Sasa–Satsuma (SS) equation are derived based on the Hirota’s bilinear method and Kadomtsev–Petviashvili hierarchy reduction method. They are expressed explicitly by rational functions with both the numerator and denominator being the determinants of even order. Four types of intrinsic structures are recognized according to the number of zero-amplitude points. The first- and second-order rogue wave solutions agree with the solutions obtained so far by the Darboux transformation. In spite of the very complicated solution form compared with the ones of many other integrable equations, the third-order rogue waves exhibit two configurations: either a triangle or a distorted pentagon. Both the types and configurations of the third-order rogue waves are determined by different choices of free parameters. As the nonlinear Schrödinger equation is a limiting case of the SS equation, it is shown that the degeneration of the first-order rogue wave of the SS equation converges to the Peregrine soliton. 
    more » « less
  4. null (Ed.)
    Abstract General rogue waves in (1+1)-dimensional three-wave resonant interaction systems are derived by the bilinear method. These solutions are divided into three families, which correspond to a simple root, two simple roots and a double root of a certain quartic equation arising from the dimension reduction, respectively. It is shown that while the first family of solutions associated with a simple root exists for all signs of the nonlinear coefficients in the three-wave interaction equations, the other two families of solutions associated with two simple roots and a double root can only exist in the so-called soliton-exchange case, where the nonlinear coefficients have certain signs. Many of these rogue wave solutions, such as those associated with two simple roots, the ones generated by a $2\times 2$ block determinant in the double-root case, and higher-order solutions associated with a simple root, are new solutions which have not been reported before. Technically, our bilinear derivation of rogue waves for the double-root case is achieved by a generalization to the previous dimension reduction procedure in the bilinear method, and this generalized procedure allows us to treat roots of arbitrary multiplicities. Dynamics of the derived rogue waves is also examined, and new rogue wave patterns are presented. Connection between these bilinear rogue waves and those derived earlier by Darboux transformation is also explained. 
    more » « less
  5. Abstract

    In this paper, general rogue wave solutions in the massive Thirring (MT) model are derived by using the Kadomtsev–Petviashvili (KP) hierarchy reduction method and these rational solutions are presented explicitly in terms of determinants whose matrix elements are elementary Schur polynomials. In the reduction process, three reduction conditions including one index‐ and two dimension‐ones are proved to be consistent by only one constraint relation on parameters of tau‐functions of the KP‐Toda hierarchy. It is found that the rogue wave solutions in the MT model depend on two background parameters, which influence their orientation and duration. Differing from many other coupled integrable systems, the MT model only admits the rogue waves of bright‐type, and the higher order rogue waves represent the superposition of fundamental ones in which the nonreducible parameters determine the arrangement patterns of fundamental rogue waves. Particularly, the super rogue wave at each order can be achieved simply by setting all internal parameters to be zero, resulting in the amplitude of the sole huge peak of orderNbeing times the background. Finally, rogue wave patterns are discussed when one of the internal parameters is large. Similar to other integrable equations, the patterns are shown to be associated with the root structures of the Yablonskii–Vorob'ev polynomial hierarchy through a linear transformation.

    more » « less