A 3×3 matrix spectral problem is introduced and its associated AKNS integrable hierarchy with four components is generated. From this spectral problem, a kind of Riemann–Hilbert problems is formulated for a system of coupled mKdV equations in the resulting AKNS integrable hierarchy. N-soliton solutions to the coupled mKdV system are presented through a specific Riemann–Hilbert problem with an identity jump matrix. 
                        more » 
                        « less   
                    
                            
                            Darboux transformations of integrable couplings and applications
                        
                    
    
            A formulation of Darboux transformations is proposed for integrable couplings, based on non-semisimple matrix Lie algebras. Applications to a kind of integrable couplings of the AKNS equations are made, along with an explicit formula for the associated Bäcklund transformation. Exact one-soliton-like solutions are computed for the integrable couplings of the second- and third-order AKNS equations, and a type of reduction is created to generate integrable couplings and their one-soliton-like solutions for the NLS and MKdV equations. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1664561
- PAR ID:
- 10079106
- Date Published:
- Journal Name:
- Reviews in mathematical physics
- Volume:
- 30
- Issue:
- 2
- ISSN:
- 1793-6659
- Page Range / eLocation ID:
- 1850003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Generalized matrix exponential solutions to the AKNS equation are obtained by the inverse scattering transformation (IST). The resulting solutions involve six matrices, which satisfy the coupled Sylvester equations. Several kinds of explicit solutions including soliton, complexiton, and Matveev solutions are deduced from the generalized matrix exponential solutions by choosing different kinds of the six involved matrices. Generalized matrix exponential solutions to a general integrable equation of the AKNS hierarchy are also derived. It is shown that the general equation and its matrix exponential solutions share the same linear structure.more » « less
- 
            Abstract Nonlocal reverse space‐time Sine/Sinh‐Gordon type equations were recently introduced. They arise from a remarkably simple nonlocal reduction of the well‐known AKNS scattering problem, hence, they constitute an integrable evolution equations. Furthermore, the inverse scattering transform (IST) for rapidly decaying data was also constructed. In this paper, the IST for these novel nonlocal equations corresponding to nonzero boundary conditions (NZBCs) at infinity is presented. The NZBC problem is more complex due to the intricate branching structure of the associated linear eigenfunctions. Two cases are analyzed, which correspond to two different values of the phase at infinity. Special soliton solutions are discussed and explicit 1‐soliton and 2‐soliton solutions are found. Both spatially independent and spatially dependent boundary conditions are considered.more » « less
- 
            Abstract We prove existence, uniqueness and non-negativity of solutions of certain integral equations describing the density of states u ( z ) in the spectral theory of soliton gases for the one dimensional integrable focusing nonlinear Schrödinger equation (fNLS) and for the Korteweg–de Vries (KdV) equation. Our proofs are based on ideas and methods of potential theory. In particular, we show that the minimising (positive) measure for a certain energy functional is absolutely continuous and its density u ( z ) ⩾ 0 solves the required integral equation. In a similar fashion we show that v ( z ), the temporal analog of u ( z ), is the difference of densities of two absolutely continuous measures. Together, the integral equations for u , v represent nonlinear dispersion relation for the fNLS soliton gas. We also discuss smoothness and other properties of the obtained solutions. Finally, we obtain exact solutions of the above integral equations in the case of a KdV condensate and a bound state fNLS condensate. Our results is a step towards a mathematical foundation for the spectral theory of soliton and breather gases, which appeared in work of El and Tovbis (2020 Phys. Rev. E 101 052207). It is expected that the presented ideas and methods will be useful for studying similar classes of integral equation describing, for example, breather gases for the fNLS, as well as soliton gases of various integrable systems.more » « less
- 
            Abstract Integrable standard and nonlocal derivative nonlinear Schrödinger equations are investigated. The direct and inverse scattering are constructed for these equations; included are both the Riemann–Hilbert and Gel’fand–Levitan–Marchenko approaches and soliton solutions. As a typical application, it is shown how these derivative NLS equations can be obtained as asymptotic limits from a nonlinear Klein–Gordon equation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    