Abstract Coral oxygen isotopes (δ18O) from the central equatorial Pacific provide monthly resolved records of El Niño‐Southern Oscillation activity over past centuries to millennia. However, calibration studies usingin situdata to assess the relative contributions of warming and freshening to coral δ18O records are exceedingly rare. Furthermore, the fidelity of coral δ18O records under the most severe thermal stress events is difficult to assess. Here, we present six coral δ18O records andin situtemperature, salinity, and seawater δ18O data from Kiritimati Island (2°N, 157°W) spanning the very strong 2015/16 El Niño event. Local sea surface temperature (SST) anomalies of +2.4 ± 0.4°C and seawater δ18O anomalies of −0.19 ± 0.02‰ contribute to the observed coral δ18O anomalies of −0.58 ± 0.05‰, consistent with a ∼70% contribution from SST and ∼30% from seawater δ18O. Our results demonstrate that Kiritimati coral δ18O records can provide reliable reconstructions even during the largest class of El Niño events.
more »
« less
Fidelity of the Coral Sr/Ca Paleothermometer Following Heat Stress in the Northern Galápagos
Abstract Coral Sr/Ca records have been widely used to reconstruct and understand past sea surface temperature (SST) variability in the tropical Pacific. However, in the eastern equatorial Pacific, coral growth conditions are marginal, and strong El Niño events have led to high mortality, limiting opportunities for coral Sr/Ca‐based SST reconstructions. In this study, we present two ∼25‐year Sr/Ca and Mg/Ca records measured on modernPorites lobatafrom Wolf and Darwin Islands in the northern Galápagos. In these records, we confirm the well‐established relationship between Sr/Ca and SST and investigate the impact of heat stress on this relationship. We demonstrate a weakened relationship between Sr/Ca and SST after a major (Degree Heating Months 9°C‐months) heat stress event during the 1997–1998 El Niño, with a larger response in the Wolf core. However, removing data that covers the 1997–1998 El Niño from calibration does not improve reconstruction statistics. Nevertheless, we find that excluding dataafterthe 1997–1998 El Niño event from the calibration reduces the SST reconstruction error slightly. These results confirm that coral Sr/Ca is a reliable SST proxy in this region, although it can respond adversely to unusual heat stress. We suggest that noise in Sr/Ca‐SST calibrations may be reduced by removing data immediately following large heat extremes.
more »
« less
- PAR ID:
- 10361346
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Paleoceanography and Paleoclimatology
- Volume:
- 36
- Issue:
- 12
- ISSN:
- 2572-4517
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Global surface temperatures during the twentieth century are characterized by multidecadal periods of accelerated or reduced warming, which are thought to be driven by Pacific decadal variability, specifically changes in trade‐wind strength. However, the relationship between trade‐wind strength and global surface warming remains poorly constrained due to the scarcity of instrumental wind observations. Previous work has shown that corals growing at Tarawa Atoll (1.3°N, 173°E) incorporate dissolved Mn flushed from lagoon sediments by El Niño‐related westerly wind events (WWEs), providing records of both westerly wind variability and trade‐wind strength (on decadal time scales). Here, we explore the utility of this novel coral Mn/Ca‐wind proxy at two nearby islands that also feature west‐facing lagoons. Short coral Mn/Ca records from Butaritari (3°N, 173°E) and Kiritimati (2°N, 157.5°W) track WWEs, albeit with some intercolony variability in the magnitude and timing of the signal. Variability in coral Mn/Ca signal intensity among records from Butaritari suggests that wind‐driven mixing of the sediment Mn reservoir may be finite and/or localized. At Kiritimati, a coral growing outside the lagoon shows higher Mn/Ca concentrations during the 1997/1998 El Niño event, suggesting that nearshore sediments may be an overlooked dissolved Mn reservoir. Taken together, these results highlight a need for additional studies of Mn reservoir variability within and across atolls that hold promise for recording WWEs. These results also suggest that Mn/Ca records from multiple coral colonies and sites are needed to generate robust coral‐based wind reconstructions, particularly from sites with unknown or complex Mn transport pathways.more » « less
-
ABSTRACT Coral skeletal structures can provide a robust record of nuclear bomb produced 14 C with valuable insight into air-sea exchange processes and water movement with applications to fisheries science. To expand these records in the South Pacific, a coral core from Tutuila Island, American Samoa was dated with density band counting covering a 59-yr period (1953–2012). Seasonal signals in elemental ratios (Sr/Ca and Ba/Ca) and stable carbon (δ 13 C) values across the coral core corroborated the well-defined annual band structure and highlighted an ocean climate shift from the 1997–1998 El Niño. The American Samoa coral 14 C measurements were consistent with other regional records but included some notable differences across the South Pacific Gyre (SPG) at Fiji, Rarotonga, and Easter Island that can be attributed to decadal ocean climate cycles, surface residence times and proximity to the South Equatorial Current. An analysis of the post-peak 14 C decline associated with each coral record indicated 14 C levels are beginning to merge for the SPG. This observation, coupled with otolith measurements from American Samoa, reinforces the perspective that bomb 14 C dating can be performed on fishes and other marine organisms of the region using the post-peak 14 C decline to properly inform fisheries management in the South Pacific.more » « less
-
Abstract Coral reefs worldwide are threatened by thermal stress caused by climate change. Especially devastating periods of coral loss frequently occur during El Niño‐Southern Oscillation (ENSO) events originating in the Eastern Tropical Pacific (ETP). El Niño‐induced thermal stress is considered the primary threat to ETP coral reefs. An increase in the frequency and intensity of ENSO events predicted in the coming decades threatens a pan‐tropical collapse of coral reefs. During the 1982–1983 El Niño, most reefs in the Galapagos Islands collapsed, and many more in the region were decimated by massive coral bleaching and mortality. However, after repeated thermal stress disturbances, such as those caused by the 1997–1998 El Niño, ETP corals reefs have demonstrated regional persistence and resiliency. Using a 44 year dataset (1970–2014) of live coral cover from the ETP, we assess whether ETP reefs exhibit the same decline as seen globally for other reefs. Also, we compare the ETP live coral cover rate of change with data from the maximum Degree Heating Weeks experienced by these reefs to assess the role of thermal stress on coral reef survival. We find that during the period 1970–2014, ETP coral cover exhibited temporary reductions following major ENSO events, but no overall decline. Further, we find that ETP reef recovery patterns allow coral to persist under these El Niño‐stressed conditions, often recovering from these events in 10–15 years. Accumulative heat stress explains 31% of the overall annual rate of change of living coral cover in the ETP. This suggests that ETP coral reefs have adapted to thermal extremes to date, and may have the ability to adapt to near‐term future climate‐change thermal anomalies. These findings for ETP reef resilience may provide general insights for the future of coral reef survival and recovery elsewhere under intensifying El Niño scenarios.more » « less
-
Abstract Coral strontium‐to‐calcium ratios (Sr/Ca) provide quantitative estimates of past sea surface temperatures (SST) that allow for the reconstruction of changes in the mean state and climate variations, such as the El Nino‐Southern Oscillation, through time. However, coral Sr/Ca ratios are highly susceptible to diagenesis, which can impart artifacts of 1–2°C that are typically on par with the tropical climate signals of interest. Microscale sampling via Secondary Ion Mass Spectrometry (SIMS) for the sampling of primary skeletal material in altered fossil corals, providing much‐needed checks on fossil coral Sr/Ca‐based paleotemperature estimates. In this study, we employ a set modern and fossil corals from Palmyra Atoll, in the central tropical Pacific, to quantify the accuracy and reproducibility of SIMS Sr/Ca analyses relative to bulk Sr/Ca analyses. In three overlapping modern coral samples, we reproduce bulk Sr/Ca estimates within ±0.3% (1σ). We demonstrate high fidelity between 3‐month smoothed SIMS coral Sr/Ca timeseries and SST (R = −0.5 to −0.8;p < 0.5). For lightly‐altered sections of a young fossil coral from the early‐20th century, SIMS Sr/Ca timeseries reproduce bulk Sr/Ca timeseries, in line with our results from modern corals. Across a moderately‐altered section of the same fossil coral, where diagenesis yields bulk Sr/Ca estimates that are 0.6 mmol too high (roughly equivalent to −6°C artifacts in SST), SIMS Sr/Ca timeseries track instrumental SST timeseries. We conclude that 3–4 SIMS analyses per month of coral growth can provide a much‐needed quantitative check on the accuracy of fossil coral Sr/Ca‐derived estimates of paleotemperature, even in moderately altered samples.more » « less
An official website of the United States government
