Abstract In this paper, we show that $$\lambda (z_1) -\lambda (z_2)$$, $$\lambda (z_1)$$, and $$1-\lambda (z_1)$$ are all Borcherds products on $$X(2) \times X(2)$$. We then use the big CM value formula of Bruinier, Kudla, and Yang to give explicit factorization formulas for the norms of $$\lambda (\frac{d+\sqrt d}2)$$, $$1-\lambda (\frac{d+\sqrt d}2)$$, and $$\lambda (\frac{d_1+\sqrt{d_1}}2) -\lambda (\frac{d_2+\sqrt{d_2}}2)$$, with the latter under the condition $$(d_1, d_2)=1$$. Finally, we use these results to show that $$\lambda (\frac{d+\sqrt d}2)$$ is always an algebraic integer and can be easily used to construct units in the ray class field of $${\mathbb{Q}}(\sqrt{d})$$ of modulus $$2$$. In the process, we also give explicit formulas for a whole family of local Whittaker functions, which are of independent interest.
more »
« less
Schemes Supported on the Singular Locus of a Hyperplane Arrangement in ℙ n
Abstract A hyperplane arrangement in $$\mathbb P^n$$ is free if $R/J$ is Cohen–Macaulay (CM), where $$R = k[x_0,\dots ,x_n]$$ and $$J$$ is the Jacobian ideal. We study the CM-ness of two related unmixed ideals: $$ J^{un}$$, the intersection of height two primary components, and $$\sqrt{J}$$, the radical. Under a mild hypothesis, we show these ideals are CM. Suppose the hypothesis fails. For equidimensional curves in $$\mathbb P^3$$, the Hartshorne–Rao module measures the failure of CM-ness and determines the even liaison class of the curve. We show that for any positive integer $$r$$, there is an arrangement for which $$R/J^{un}$$ (resp. $$R/\sqrt{J}$$) fails to be CM in only one degree, and this failure is by $$r$$. We draw consequences for the even liaison class of $$J^{un}$$ or $$\sqrt{J}$$.
more »
« less
- Award ID(s):
- 2048906
- PAR ID:
- 10361502
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- International Mathematics Research Notices
- Volume:
- 2022
- Issue:
- 1
- ISSN:
- 1073-7928
- Page Range / eLocation ID:
- p. 140-170
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We study a class of combinatorially defined polynomial ideals that are generated by minors of a generic symmetric matrix. Included within this class are the symmetric determinantal ideals, the symmetric ladder determinantal ideals, and the symmetric Schubert determinantal ideals of A. Fink, J. Rajchgot, and S. Sullivant. Each ideal in our class is a type C analog of a Kazhdan–Lusztig ideal of A. Woo and A. Yong; that is, it is the scheme‐theoretic defining ideal of the intersection of a type C Schubert variety with a type C opposite Schubert cell, appropriately coordinatized. The Kazhdan–Lusztig ideals that arise are exactly those where the opposite cell is 123‐avoiding. Our main results include Gröbner bases for these ideals, prime decompositions of their initial ideals (which are Stanley–Reisner ideals of subword complexes), and combinatorial formulas for their multigraded Hilbert series in terms of pipe dreams.more » « less
-
null (Ed.)Abstract We consider the inequality $$f \geqslant f\star f$$ for real functions in $$L^1({\mathbb{R}}^d)$$ where $$f\star f$$ denotes the convolution of $$f$$ with itself. We show that all such functions $$f$$ are nonnegative, which is not the case for the same inequality in $L^p$ for any $$1 < p \leqslant 2$$, for which the convolution is defined. We also show that all solutions in $$L^1({\mathbb{R}}^d)$$ satisfy $$\int _{{\mathbb{R}}^{\textrm{d}}}f(x)\ \textrm{d}x \leqslant \tfrac 12$$. Moreover, if $$\int _{{\mathbb{R}}^{\textrm{d}}}f(x)\ \textrm{d}x = \tfrac 12$$, then $$f$$ must decay fairly slowly: $$\int _{{\mathbb{R}}^{\textrm{d}}}|x| f(x)\ \textrm{d}x = \infty $$, and this is sharp since for all $r< 1$, there are solutions with $$\int _{{\mathbb{R}}^{\textrm{d}}}f(x)\ \textrm{d}x = \tfrac 12$$ and $$\int _{{\mathbb{R}}^{\textrm{d}}}|x|^r f(x)\ \textrm{d}x <\infty $$. However, if $$\int _{{\mathbb{R}}^{\textrm{d}}}f(x)\ \textrm{d}x =: a < \tfrac 12$$, the decay at infinity can be much more rapid: we show that for all $$a<\tfrac 12$$, there are solutions such that for some $$\varepsilon>0$$, $$\int _{{\mathbb{R}}^{\textrm{d}}}e^{\varepsilon |x|}f(x)\ \textrm{d}x < \infty $$.more » « less
-
Abstract An $$n \times n$$ matrix with $$\pm 1$$ entries that acts on $${\mathbb {R}}^{n}$$ as a scaled isometry is called Hadamard. Such matrices exist in some, but not all dimensions. Combining number-theoretic and probabilistic tools, we construct matrices with $$\pm 1$$ entries that act as approximate scaled isometries in $${\mathbb {R}}^{n}$$ for all $$n \in {\mathbb {N}}$$. More precisely, the matrices we construct have condition numbers bounded by a constant independent of $$n$$. Using this construction, we establish a phase transition for the probability that a random frame contains a Riesz basis. Namely, we show that a random frame in $${\mathbb {R}}^{n}$$ formed by $$N$$ vectors with independent identically distributed coordinate having a nondegenerate symmetric distribution contains many Riesz bases with high probability provided that $$N \ge \exp (Cn)$$. On the other hand, we prove that if the entries are sub-Gaussian, then a random frame fails to contain a Riesz basis with probability close to $$1$$ whenever $$N \le \exp (cn)$$, where $c<C$ are constants depending on the distribution of the entries.more » « less
-
Abstract We analyze an algorithmic question about immersion theory: for which $$m$$, $$n$$, and $$CAT=\textbf{Diff}$$ or $$\textbf{PL}$$ is the question of whether an $$m$$-dimensional $CAT$-manifold is immersible in $$\mathbb{R}^{n}$$ decidable? We show that PL immersibility is decidable in all cases except for codimension 2, whereas smooth immersibility is decidable in all odd codimensions and undecidable in many even codimensions. As a corollary, we show that the smooth embeddability of an $$m$$-manifold with boundary in $$\mathbb{R}^{n}$$ is undecidable when $n-m$ is even and $$11m \geq 10n+1$$.more » « less
An official website of the United States government
