Let M n M_n be drawn uniformly from all ± 1 \pm 1 symmetric n × n n \times n matrices. We show that the probability that M n M_n is singular is at most exp  ( − c ( n log  n ) 1 / 2 ) \exp (-c(n\log n)^{1/2}) , which represents a natural barrier in recent approaches to this problem. In addition to improving on the best-known previous bound of Campos, Mattos, Morris and Morrison of exp  ( − c n 1 / 2 ) \exp (-c n^{1/2}) on the singularity probability, our method is different and considerably simpler: we prove a “rough” inverse Littlewood-Offord theorem by a simple combinatorial iteration. 
                        more » 
                        « less   
                    
                            
                            Approximately Hadamard Matrices and Riesz Bases in Random Frames
                        
                    
    
            Abstract An $$n \times n$$ matrix with $$\pm 1$$ entries that acts on $${\mathbb {R}}^{n}$$ as a scaled isometry is called Hadamard. Such matrices exist in some, but not all dimensions. Combining number-theoretic and probabilistic tools, we construct matrices with $$\pm 1$$ entries that act as approximate scaled isometries in $${\mathbb {R}}^{n}$$ for all $$n \in {\mathbb {N}}$$. More precisely, the matrices we construct have condition numbers bounded by a constant independent of $$n$$. Using this construction, we establish a phase transition for the probability that a random frame contains a Riesz basis. Namely, we show that a random frame in $${\mathbb {R}}^{n}$$ formed by $$N$$ vectors with independent identically distributed coordinate having a nondegenerate symmetric distribution contains many Riesz bases with high probability provided that $$N \ge \exp (Cn)$$. On the other hand, we prove that if the entries are sub-Gaussian, then a random frame fails to contain a Riesz basis with probability close to $$1$$ whenever $$N \le \exp (cn)$$, where $c<C$ are constants depending on the distribution of the entries. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2054408
- PAR ID:
- 10490090
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- International Mathematics Research Notices
- Volume:
- 2024
- Issue:
- 3
- ISSN:
- 1073-7928
- Format(s):
- Medium: X Size: p. 2044-2065
- Size(s):
- p. 2044-2065
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract In this paper, we study the largest eigenvalues of sample covariance matrices with elliptically distributed data. We consider the sample covariance matrix $$Q=YY^{*},$$ where the data matrix $$Y \in \mathbb{R}^{p \times n}$$ contains i.i.d. $$p$$-dimensional observations $$\textbf{y}_{i}=\xi _{i}T\textbf{u}_{i},\;i=1,\dots ,n.$$ Here $$\textbf{u}_{i}$$ is distributed on the unit sphere, $$\xi _{i} \sim \xi $$ is some random variable that is independent of $$\textbf{u}_{i}$$ and $$T^{*}T=\varSigma $$ is some deterministic positive definite matrix. Under some mild regularity assumptions on $$\varSigma ,$$ assuming $$\xi ^{2}$$ has bounded support and certain decay behaviour near its edge so that the limiting spectral distribution of $$Q$$ has a square root decay behaviour near the spectral edge, we prove that the Tracy–Widom law holds for the largest eigenvalues of $$Q$$ when $$p$$ and $$n$$ are comparably large. Based on our results, we further construct some useful statistics to detect the signals when they are corrupted by high dimensional elliptically distributed noise.more » « less
- 
            Motivated by the Erdős–Szekeres convex polytope conjecture in $$\mathbb{R}^{d}$$ , we initiate the study of the following induced Ramsey problem for hypergraphs. Given integers $$n>k\geqslant 5$$ , what is the minimum integer $$g_{k}(n)$$ such that any $$k$$ -uniform hypergraph on $$g_{k}(n)$$ vertices with the property that any set of $k+1$ vertices induces 0, 2, or 4 edges, contains an independent set of size $$n$$ . Our main result shows that $$g_{k}(n)>2^{cn^{k-4}}$$ , where $c=c(k)$ .more » « less
- 
            We consider the high-dimensional linear regression problem, where the algorithmic goal is to efficiently infer an unknown feature vector $$\beta^*\in\mathbb{R}^p$$ from its linear measurements, using a small number $$n$$ of samples. Unlike most of the literature, we make no sparsity assumption on $$\beta^*$$, but instead adopt a different regularization: In the noiseless setting, we assume $$\beta^*$$ consists of entries, which are either rational numbers with a common denominator $$Q\in\mathbb{Z}^+$$ (referred to as $Q-$$rationality); or irrational numbers taking values in a rationally independent set of bounded cardinality, known to learner; collectively called as the mixed-range assumption. Using a novel combination of the Partial Sum of Least Squares (PSLQ) integer relation detection, and the Lenstra-Lenstra-Lov\'asz (LLL) lattice basis reduction algorithms, we propose a polynomial-time algorithm which provably recovers a $$\beta^*\in\mathbb{R}^p$ enjoying the mixed-range assumption, from its linear measurements $$Y=X\beta^*\in\mathbb{R}^n$$ for a large class of distributions for the random entries of $$X$$, even with one measurement ($n=1$). In the noisy setting, we propose a polynomial-time, lattice-based algorithm, which recovers a $$\beta^*\in\mathbb{R}^p$$ enjoying the $Q-$rationality property, from its noisy measurements $$Y=X\beta^*+W\in\mathbb{R}^n$$, even from a single sample ($n=1$). We further establish that for large $$Q$$, and normal noise, this algorithm tolerates information-theoretically optimal level of noise. We then apply these ideas to develop a polynomial-time, single-sample algorithm for the phase retrieval problem. Our methods address the single-sample ($n=1$) regime, where the sparsity-based methods such as the Least Absolute Shrinkage and Selection Operator (LASSO) and the Basis Pursuit are known to fail. Furthermore, our results also reveal algorithmic connections between the high-dimensional linear regression problem, and the integer relation detection, randomized subset-sum, and shortest vector problems.more » « less
- 
            null (Ed.)Abstract The duality principle for group representations developed in Dutkay et al. (J Funct Anal 257:1133–1143, 2009), Han and Larson (Bull Lond Math Soc 40:685–695, 2008) exhibits a fact that the well-known duality principle in Gabor analysis is not an isolated incident but a more general phenomenon residing in the context of group representation theory. There are two other well-known fundamental properties in Gabor analysis: the biorthogonality and the fundamental identity of Gabor analysis. The main purpose of this this paper is to show that these two fundamental properties remain to be true for general projective unitary group representations. Moreover, we also present a general duality theorem which shows that that muti-frame generators meet super-frame generators through a dual commutant pair of group representations. Applying it to the Gabor representations, we obtain that $$\{\pi _{\Lambda }(m, n)g_{1} \oplus \cdots \oplus \pi _{\Lambda }(m, n)g_{k}\}_{m, n \in {\mathbb {Z}}^{d}}$$ { π Λ ( m , n ) g 1 ⊕ ⋯ ⊕ π Λ ( m , n ) g k } m , n ∈ Z d is a frame for $$L^{2}({\mathbb {R}}\,^{d})\oplus \cdots \oplus L^{2}({\mathbb {R}}\,^{d})$$ L 2 ( R d ) ⊕ ⋯ ⊕ L 2 ( R d ) if and only if $$\cup _{i=1}^{k}\{\pi _{\Lambda ^{o}}(m, n)g_{i}\}_{m, n\in {\mathbb {Z}}^{d}}$$ ∪ i = 1 k { π Λ o ( m , n ) g i } m , n ∈ Z d is a Riesz sequence, and $$\cup _{i=1}^{k} \{\pi _{\Lambda }(m, n)g_{i}\}_{m, n\in {\mathbb {Z}}^{d}}$$ ∪ i = 1 k { π Λ ( m , n ) g i } m , n ∈ Z d is a frame for $$L^{2}({\mathbb {R}}\,^{d})$$ L 2 ( R d ) if and only if $$\{\pi _{\Lambda ^{o}}(m, n)g_{1} \oplus \cdots \oplus \pi _{\Lambda ^{o}}(m, n)g_{k}\}_{m, n \in {\mathbb {Z}}^{d}}$$ { π Λ o ( m , n ) g 1 ⊕ ⋯ ⊕ π Λ o ( m , n ) g k } m , n ∈ Z d is a Riesz sequence, where $$\pi _{\Lambda }$$ π Λ and $$\pi _{\Lambda ^{o}}$$ π Λ o is a pair of Gabor representations restricted to a time–frequency lattice $$\Lambda $$ Λ and its adjoint lattice $$\Lambda ^{o}$$ Λ o in $${\mathbb {R}}\,^{d}\times {\mathbb {R}}\,^{d}$$ R d × R d .more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
