The polarization difference and band offset between Al(Ga)N and GaN induce two-dimensional (2D) free carriers in Al(Ga)N/GaN heterojunctions without any chemical doping. A high-density 2D electron gas (2DEG), analogous to the recently discovered 2D hole gas in a metal-polar structure, is predicted in a N-polar pseudomorphic GaN/Al(Ga)N heterostructure on unstrained AlN. We report the observation of such 2DEGs in N-polar undoped pseudomorphic GaN/AlGaN heterostructures on single-crystal AlN substrates by molecular beam epitaxy. With a high electron density of ∼4.3 ×1013/cm2 that maintains down to cryogenic temperatures and a room temperature electron mobility of ∼450 cm2/V s, a sheet resistance as low as ∼320 Ω/◻ is achieved in a structure with an 8 nm GaN layer. These results indicate significant potential of AlN platform for future high-power RF electronics based on N-polar III-nitride high electron mobility transistors.
Gallium nitride high-electron-mobility transistors (GaN HEMTs) are at a point of rapid growth in defense (radar, SATCOM) and commercial (5G and beyond) industries. This growth also comes at a point at which the standard GaN heterostructures remain unoptimized for maximum performance. For this reason, we propose the shift to the aluminum nitride (AlN) platform. AlN allows for smarter, highly-scaled heterostructure design that will improve the output power and thermal management of III-nitride amplifiers. Beyond improvements over the incumbent amplifier technology, AlN will allow for a level of integration previously unachievable with GaN electronics. State-of-the-art high-current p-channel FETs, mature filter technology, and advanced waveguides, all monolithically integrated with an AlN/GaN/AlN HEMT, is made possible with AlN. It is on this new AlN platform that nitride electronics may maximize their full high-power, high-speed potential for mm-wave communication and high-power logic applications.
more » « less- Award ID(s):
- 1719875
- NSF-PAR ID:
- 10361680
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Semiconductor Science and Technology
- Volume:
- 36
- Issue:
- 4
- ISSN:
- 0268-1242
- Page Range / eLocation ID:
- Article No. 044001
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The recent demonstration of W mm−1output power at 94 GHz in AlN/GaN/AlN high‐electron‐mobility transistors (HEMTs) has established AlN as a promising platform for millimeter‐wave electronics. The current state‐of‐art AlN HEMTs using ex situ‐deposited silicon nitride (SiN) passivation layers suffer from soft gain compression due to trapping of carriers by surface states. Reducing surface state dispersion in these devices is thus desired to access higher output powers. Herein, a potential solution using a novel in situ crystalline AlN passivation layer is provided. A thick, 30+ nm‐top AlN passivation layer moves the as‐grown surface away from the 2D electron gas (2DEG) channel and reduces its effect on the device. Through a series of metal‐polar AlN/GaN/AlN heterostructure growths, it is found that pseudomorphically strained 15 nm thin GaN channels are crucial to be able to grow thick AlN barriers without cracking. The fabricated recessed‐gate HEMTs on an optimized heterostructure with 50 nm AlN barrier layer and 15 nm GaN channel layer show reduction in dispersion down to compared with in current state‐of‐art ex situ SiN‐passivated HEMTs. These results demonstrate the efficacy of this unique in situ crystalline AlN passivation technique and should unlock higher mm‐wave powers in next‐generation AlN HEMTs.
-
Aluminum nitride (AlN) offers novel potential for electronic integration and performance benefits for high‐power, millimeter‐wave amplification. Herein, load‐pull power performance at 30 and 94 GHz for AlN/GaN/AlN high‐electron‐mobility transistors (HEMTs) on silicon carbide (SiC) is reported. When tuned for peak power‐added efficiency (PAE), the reported AlN/GaN/AlN HEMT shows PAE of 25% and 15%, with associated output power () of 2.5 and 1.7 W mm−1, at 30 and 94 GHz, respectively. At 94 GHz, the maximum generated is 2.2 W mm−1, with associated PAE of 13%.
-
Wide and ultrawide-bandgap semiconductors lie at the heart of next-generation high-power, high-frequency electronics. Here, we report the growth of ultrawide-bandgap boron nitride (BN) thin films on wide-bandgap gallium nitride (GaN) by pulsed laser deposition. Comprehensive spectroscopic (core level and valence band x-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and Raman) and microscopic (atomic force microscopy and scanning transmission electron microscopy) characterizations confirm the growth of BN thin films on GaN. Optically, we observed that the BN/GaN heterostructure is second-harmonic generation active. Moreover, we fabricated the BN/GaN heterostructure-based Schottky diode that demonstrates rectifying characteristics, lower turn-on voltage, and an improved breakdown capability (∼234 V) as compared to GaN (∼168 V), owing to the higher breakdown electrical field of BN. Our approach is an early step toward bridging the gap between wide and ultrawide-bandgap materials for potential optoelectronics as well as next-generation high-power electronics.
-
We report on the absence of strain relaxation mechanism in Al 0.6 Ga 0.4 N epilayers grown on (0001) AlN substrates for thickness as large as 3.5 μm, three-orders of magnitude beyond the Matthews–Blakeslee critical thickness for the formation of misfit dislocations (MDs). A steady-state compressive stress of 3–4 GPa was observed throughout the AlGaN growth leading to a large lattice bow (a radius of curvature of 0.5 m −1 ) for the thickest sample. Despite the large lattice mismatch-induced strain energy, the epilayers exhibited a smooth and crack-free surface morphology. These results point to the presence of a large barrier for nucleation of MDs in Al-rich AlGaN epilayers. Compositionally graded AlGaN layers were investigated as potential strain relief layers by the intentional introduction of MDs. While the graded layers abetted MD formation, the inadequate length of these MDs correlated with insignificant strain relaxation. This study emphasizes the importance of developing strain management strategies for the implementation of the single-crystal AlN substrate platform for III-nitride deep-UV optoelectronics and power electronics.more » « less