skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Galactic Mass Estimates Using Dwarf Galaxies as Kinematic Tracers
Abstract New mass estimates and cumulative mass profiles with Bayesian credible regions for the Milky Way (MW) are found using the Galactic Mass Estimator (GME) code and dwarf galaxy (DG) kinematic data from multiple sources. GME takes a hierarchical Bayesian approach to simultaneously estimate the true positions and velocities of the DGs, their velocity anisotropy, and the model parameters for the Galaxy’s total gravitational potential. In this study, we incorporate meaningful prior information from past studies and simulations. The prior distributions for the physical model are informed by the results of Eadie & Jurić, who used globular clusters instead of DGs, as well as by the subhalo distributions of the Ananke Gaia-like surveys from Feedback in Realistic Environments-2 cosmological simulations (see Sanderson et al.). Using DGs beyond 45 kpc, we report median and 95% credible region estimates forr200= 212.8 (191.12, 238.44) kpc, and for the total enclosed massM200= 1.19 (0.87, 1.68) × 1012M(adopting Δc= 200). Median mass estimates at specific radii are also reported (e.g.,M(< 50 kpc) = 0.52 × 1012MandM(100 kpc) = 0.78 × 1012M). Estimates are comparable to other recent studies using Gaia DR2 and DGs, but notably different from the estimates of Eadie & Jurić. We perform a sensitivity analysis to investigate whether individual DGs and/or a more massive Large Magellanic Cloud on the order of 1011Mmay be affecting our mass estimates. We find possible supporting evidence for the idea that some DGs are affected by a massive LMC and are not in equilibrium with the MW.  more » « less
Award ID(s):
2045928
PAR ID:
10361746
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
924
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 131
Size(s):
Article No. 131
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a catalog of clouds identified from the12CO (1–0) data of M83, which was observed using the Atacama Large Millimeter/submillimeter Array with a spatial resolution of ∼46 pc and a mass sensitivity of ∼104M(3σ). The almost full-disk coverage and high sensitivity of the data allowed us to sample 5724 molecular clouds with a median mass of ∼1.9 × 105M, which is comparable to the most frequently sampled mass of giant molecular clouds by surveys in the Milky Way (MW). About 60% of the total CO luminosity in M83's disk arises from clouds more massive than 106M. Such massive clouds comprise 16% of the total clouds in number and tend to concentrate toward the arm, bar, and center, while smaller clouds are more prevalent in interarm regions. Most >106Mclouds have peak brightness temperaturesTpeakabove 2 K with the current resolution. Comparing the observed cloud properties with the scaling relations determined by P. M. Solomon et al. (1987, hereafter S87),Tpeak> 2 K clouds follow the relations, butTpeak< 2 K clouds, which are dominant in number, deviate significantly. Without considering the effect of beam dilution, the deviations would suggest modestly high virial parameters (medianαvir∼ 2.7) and low surface mass densities (median Σ ∼ 22Mpc−2) for the entire cloud samples, which are similar to values found for the MW clouds by T. S. Rice et al. (2016) and M.-A Miville-Deschênes et al. (2017). However, once beam dilution is taken into account, the observedαvirand Σ for a majority of the clouds (mostlyTpeak<2 K) can be potentially explained with intrinsic Σ of ∼100Mpc−2andαvirof ∼1, which are similar to the clouds of S87. 
    more » « less
  2. Abstract We present joint South Pole Telescope and XMM-Newton observations of eight massive galaxy clusters (0.8–2 × 1015M) spanning a redshift range of 0.16–0.35. Employing a novel Sunyaev–Zel’dovich + X-ray fitting technique, we effectively constrain the thermodynamic properties of these clusters out to the virial radius. The resulting best-fit electron density, deprojected temperature, and deprojected pressure profiles are in good agreement with previous observations of massive clusters. For the majority of the cluster sample (five out of eight clusters), the entropy profiles exhibit a self-similar behavior near the virial radius. We further derive hydrostatic mass, gas mass, and gas fraction profiles for all clusters up to the virial radius. Comparing the enclosed gas fraction profiles with the universal gas fraction profile, we obtain nonthermal pressure fraction profiles for our cluster sample at  >0.5R500, demonstrating a steeper increase betweenR500andR200that is consistent with the hydrodynamical simulations. Our analysis yields nonthermal pressure fraction ranges of 8%–28% (median: 15% ± 11%) atR500and 21%–35% (median: 27% ± 12%) atR200. Notably, weak-lensing mass measurements are available for only four clusters in our sample, and our recovered total cluster masses, after accounting for nonthermal pressure, are consistent with these measurements. 
    more » « less
  3. Abstract Low-mass galaxy pair fractions are understudied, and it is unclear whether low-mass pair fractions evolve in the same way as more massive systems over cosmic time. In the era of JWST, Roman, and Rubin, selecting galaxy pairs in a self-consistent way will be critical to connect observed pair fractions to cosmological merger rates across all mass scales and redshifts. Utilizing the Illustris TNG100 simulation, we create a sample of physically associated low-mass (108<M*< 5 × 109M) and high-mass (5 × 109<M*< 1011M) pairs betweenz= 0 and 4.2. The low-mass pair fraction increases fromz= 0 to 2.5, while the high-mass pair fraction peaks atz= 0 and is constant or slightly decreasing atz> 1. Atz= 0 the low-mass major (1:4 mass ratio) pair fraction is 4× lower than high-mass pairs, consistent with findings for cosmological merger rates. We show that separation limits that vary with the mass and redshift of the system, such as scaling by the virial radius of the host halo (rsep< 1Rvir), are critical for recovering pair fraction differences between low-mass and high-mass systems. Alternatively, static physical separation limits applied equivalently to all galaxy pairs do not recover the differences between low- and high-mass pair fractions, even up to separations of 300 kpc. Finally, we place isolated mass analogs of Local Group galaxy pairs, i.e., Milky Way (MW)–M31, MW–LMC, LMC–SMC, in a cosmological context, showing that isolated analogs of LMC–SMC-mass pairs and low-separation (<50 kpc) MW–LMC-mass pairs are 2–3× more common atz≳ 2–3. 
    more » « less
  4. The physical mechanisms behind the fragmentation of high-mass dense clumps into compact star-forming cores and the properties of these cores are fundamental topics that are heavily investigated in current astrophysical research. The ALMAGAL survey provides the opportunity to study this process at an unprecedented level of detail and statistical significance, featuring high-angular resolution 1.38 mm ALMA observations of 1013 massive dense clumps at various Galactic locations. These clumps cover a wide range of distances (~2–8 kpc), masses (~102–104M), surface densities (0.1–10 g cm−2), and evolutionary stages (luminosity over mass ratio indicator of ~0.05 <L/M <450L/M). Here, we present the catalog of compact sources obtained with theCuTExalgorithm from continuum images of the full ALMAGAL clump sample combining ACA-7 m and 12 m ALMA arrays, reaching a uniform high median spatial resolution of ~1400 au (down to ~800 au). We characterize and discuss the revealed fragmentation properties and the photometric and estimated physical parameters of the core population. The ALMAGAL compact source catalog includes 6348 cores detected in 844 clumps (83% of the total), with a number of cores per clump between 1 and 49 (median of 5). The estimated core diameters are mostly within ~800–3000 au (median of 1700 au). We assigned core temperatures based on theL/Mof the hosting clump, and obtained core masses from 0.002 to 345M(complete above 0.23 M), exhibiting a good correlation with the core radii (M ∝ R2.6). We evaluated the variation in the core mass function (CMF) with evolution as traced by the clumpL/M, finding a clear, robust shift and change in slope among CMFs within subsamples at different stages. This finding suggests that the CMF shape is not constant throughout the star formation process, but rather it builds (and flattens) with evolution, with higher core masses reached at later stages. We found that all cores within a clump grow in mass on average with evolution, while a population of possibly newly formed lower-mass cores is present throughout. The number of cores increases with the core masses, at least until the most massive core reaches ~10M. More generally, our results favor a clump-fed scenario for high-mass star formation, in which cores form as low-mass seeds, and then gain mass while further fragmentation occurs in the clump. 
    more » « less
  5. Abstract The recent discovery of two detached black hole–star (BH–star) binaries from Gaia’s third data release has sparked interest in understanding the formation mechanisms of these systems. We investigate the formation of these systems by dynamical processes in young star clusters (SCs) and via isolated binary (IB) evolution, using a combination of directN-body and population synthesis simulations. We find that dynamical formation in SCs is nearly 50 times more efficient per unit of star formation at producing BH–star binaries than IB evolution. We expand this analysis to the full Milky Way (MW) using a FIRE-2 hydrodynamical simulation of an MW-mass galaxy. Even assuming that only 10% of star formation goes into SCs, we find that approximately four out of every five BH–star systems are formed dynamically, and that the MW contains a total of ∼2 × 105BH–star systems. Many of these dynamically formed systems have longer orbital periods, greater eccentricities, and greater black hole masses than their isolated counterparts. For binaries older than 100 Myr, we show that any detectable system withe≳ 0.5 orMBH≳ 10Mcanonlybe formed through dynamical processes. Our MW model predicts between 64 and 215 such detections from the complete DR4 Gaia catalog, with the majority of systems being dynamically formed in massive and metal-rich SCs. Finally, we compare our populations to the recently discovered Gaia BH1 and Gaia BH2, and conclude that the dynamical scenario is the most favorable formation pathway for both systems. 
    more » « less