skip to main content


Title: Ion Pair Uptake in Ion Gel Devices Based on Organic Mixed Ionic–Electronic Conductors
Abstract

In organic mixed ionic–electronic conductors (OMIECs), it is critical to understand the motion of ions in the electrolyte and OMIEC. Generally, the focus is on the movement of net charge during gating, and the motion of neutral anion–cation pairs is seldom considered. Uptake of mobile ion pairs by the semiconductor before electrochemical gating (passive uptake) can be advantageous as this can improve device speed, and both ions can participate in charge compensation during gating. Here, such passive ion pair uptake in high‐speed solid‐state devices is demonstrated using an ion gel electrolyte. This is compared to a polymerized ionic liquid (PIL) electrolyte to understand how ion pair uptake affects device characteristics. Using X‐ray photoelectron spectroscopy, the passive uptake of ion pairs from the ion gel into the OMIEC is detected, whereas no uptake is observed with a PIL electrolyte. This is corroborated by X‐ray scattering, which reveals morphological changes to the OMIEC from the uptake of ion pairs. With in situ Raman, a reorganization of both anions and cations is then observed during gating. Finally, the speed and retention of OMIEC‐based neuromorphic devices are tuned by controlling the freedom of charge motion in the electrolyte.

 
more » « less
Award ID(s):
1808401
NSF-PAR ID:
10361752
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
31
Issue:
47
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Electrolyte-gate transistors are a powerful platform for control of material properties, spanning semiconducting behavior, insulator-metal transitions, superconductivity, magnetism, optical properties, etc. When applied to magnetic materials, for example, electrolyte-gate devices are promising for magnetoionics, wherein voltage-driven ionic motion enables low-power control of magnetic order and properties. The mechanisms of electrolyte gating with ionic liquids and gels vary from predominantly electrostatic to entirely electrochemical, however, sometimes even in single material families, for reasons that remain unclear. In this Perspective, we compare literature ionic liquid and ion gel gating data on two rather different material classes—perovskite oxides and pyrite-structure sulfides—seeking to understand which material factors dictate the electrostatic vs electrochemical gate response. From these comparisons, we argue that the ambient-temperature anion vacancy diffusion coefficient ( not the vacancy formation energy) is a critical factor controlling electrostatic vs electrochemical mechanisms in electrolyte gating of these materials. We, in fact, suggest that the diffusivity of lowest-formation-energy defects may often dictate the electrostatic vs electrochemical response in electrolyte-gated inorganic materials, thereby advancing a concrete hypothesis for further exploration in a broader range of materials. 
    more » « less
  2. All-solid-state batteries (ASSBs) have garnered increasing attention due to the enhanced safety, featuring nonflammable solid electrolytes as well as the potential to achieve high energy density. 1 The advancement of the ASSBs is expected to provide, arguably, the most straightforward path towards practical, high-energy, and rechargeable batteries based on metallic anodes. 1 However, the sluggish ion transmission at the cathode-electrolyte (solid/solid) interface would result in the high resistant at the contact and limit the practical implementation of these all solid-state materials in real world batteries. 2 Several methods were suggested to enhance the kinetic condition of the ion migration between the cathode and the solid electrolyte (SE). 3 A composite strategy that mixes active materials and SEs for the cathode is a general way to decrease the ion transmission barrier at the cathode-electrolyte interface. 3 The active material concentration in the cathode is reduced as much as the SE portion increases by which the energy density of the ASSB is restricted. In addition, the mixing approach generally accompanies lattice mismatches between the cathode active materials and the SE, thus providing only limited improvements, which is imputed by random contacts between the cathode active materials and the SE during the mixing process. Implementing high-pressure for the electrode and electrolyte of ASSB in the assembling process has been verified is a but effective way to boost the ion transmission ability between the cathode active materials and the SE by decreasing the grain boundary impedance. Whereas the short-circuit of the battery would be induced by the mechanical deformation of the electrolyte under high pressure. 4 Herein, we demonstrate a novel way to address the ion transmission problem at the cathode-electrolyte interface in ASSBs. Starting from the cathode configuration, the finite element method (FEM) was employed to evaluate the current concentration and the distribution of the space charge layer at the cathode-electrolyte interface. Hierarchical three-dimensional (HTD) structures are found to have a higher Li + transfer number (t Li+ ), fewer free anions, and the weaker space-charge layer at the cathode-electrolyte interface in the resulting FEM simulation. To take advantage of the HTD structure, stereolithography is adopted as a manufacturing technique and single-crystalline Ni-rich (SCN) materials are selected as the active materials. Next, the manufactured HTD cathode is sintered at 600 °C in an N 2 atmosphere for the carbonization of the resin, which induces sufficient electronic conductivity for the cathode. Then, the gel-like Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 (LATP) precursor is synthesized and filled into the voids of the HTD structure cathode sufficiently. And the filled HTD structure cathodes are sintered at 900 °C to achieve the crystallization of the LATP gel. Scanning transmission electron microscopy (STEM) is used to unveil the morphology of the cathode-electrolyte interface between the sintered HTD cathode and the in-situ generated electrolyte (LATP). A transient phase has been found generated at the interface and matched with both lattices of the SCN and the SE, accelerating the transmission of the Li-ions, which is further verified by density functional theory calculations. In addition, Electron Energy Loss Spectroscopy demonstrates the preserved interface between HTD cathode and SEs. Atomic force microscopy is employed to measure the potential image of the cross-sectional interface by the peak force tapping mode. The average potential of modified samples is lower than the sample that mix SCN and SEs simply in the 2D planar structure, which confirms a weakened space charge layer by the enhanced contact capability as well as the ion transmission ability. To see if the demonstrated method is universally applicable, LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM811) is selected as the cathode active material and manufactured in the same way as the SCN. The HTD cathode based on NCM811 exhibits higher electrochemical performance compared with the reference sample based on the 2D planar mixing-type cathode. We believe such a demonstrated universal strategy provides a new guideline to engineer the cathode/electrolyte interface by revolutionizing electrode structures that can be applicable to all-solid-state batteries. Figure 1. Schematic of comparing of traditional 2D planar cathode and HTD cathode in ASSB Tikekar, M. D. , et al. , Nature Energy (2016) 1 (9), 16114 Banerjee, A. , et al. , Chem Rev (2020) 120 (14), 6878 Chen, R. , et al. , Chem Rev (2020) 120 (14), 6820 Cheng, X. , et al. , Advanced Energy Materials (2018) 8 (7) Figure 1 
    more » « less
  3. Abstract

    Electric-double-layer (EDL) gated transistors use ions in an electrolyte to induce charge in the channel of the transistor by field-effect. Because a sub-nanometer gap capacitor is created at the electrolyte/channel interface, large capacitance densities (∼µF cm−2) corresponding to high sheet carrier densities (1014cm−2) can be induced, exceeding conventional gate dielectrics by about one order of magnitude. Because it is an interfacial technique, EDL gating is especially effective on two-dimensional (2D) crystals, which—at the monolayer limit—are basically interfaces themselves. Both solid polymer electrolytes and ionic liquids are routinely used as ion-conducting gate dielectrics, and they have provided access to regimes of transport in 2D materials that would be inaccessible otherwise. The technique, now widely used, has enabled the 2D crystal community to study superconductivity, spin- and valleytronics, investigate electrical and structural phase transitions, and create abruptp-njunctions to generate tunneling, among others. In addition to using EDL gating as a tool to investigate properties of the 2D crystals, more recent efforts have emerged to engineer the electrolyte to add new functionality and device features, such as synaptic plasticity, bistability and non-volatility. Example of potential applications include neuromorphic computing and non-volatile memory. This review focuses on using ions forelectrostaticcontrol of 2D crystal transistors both to uncover basic properties of 2D crystals, and also to add new device functionalities.

     
    more » « less
  4. Abstract

    Conjugated‐polymer‐based organic electrochemical transistors (OECTs) are being studied for applications ranging from biochemical sensing to neural interfaces. While new polymers that interface digital electronics with the aqueous chemistry of life are being developed, the majority of high‐performance organic transistor materials are poor at transporting biologically relevant ions. Here, the operating mode of an organic transistor is changed from that of an electrolyte‐gated organic field‐effect transistor (EGOFET) to that of an OECT by incorporating an ion exchange gel between the active layer and the aqueous electrolyte. This device works by taking up biologically relevant ions from solution and injecting more hydrophobic ions into the active layer. Using poly[2,5‐bis(3‐tetradecylthiophen‐2‐yl) thieno[3,2‐b]thiophene] as the active layer and a blend of an ionic liquid, 1‐butyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide, and poly(vinylidene fluoride‐co‐hexafluoropropylene) as the ion exchange gel, four orders of magnitude improvement in device transconductance and a 100‐fold increase in kinetics are demonstrated. The ability of the ion‐exchange‐gel OECT to record biological signals by measuring the action potentials of a Venus flytrap is demonstrated. These results show the possibility of using interface engineering to open up a wider palette of organic semiconductors as OECTs that can be gated by aqueous solutions.

     
    more » « less
  5. Conventional lithium ion battery separators are microporous polyolefin membranes that play a passive role in the electrochemical cell. Next generation separators should offer significant performance enhancements, while being fabricated through facile, low cost approaches with the ability to readily tune physicochemical properties. This study presents a single-step manufacturing technique based on UV-initiated polymerization-induced phase separation (PIPS), wherein microporous separators are fabricated from multifunctional monomers and ethylene carbonate (EC), which functions as both the pore-forming agent (porogen) and electrolyte component in the electrochemical cell. By controlling the ratio of the 1,4-butanediol diacrylate (BDDA) monomer to ethylene carbonate, monolithic microporous membranes are readily prepared with 25 μm thickness and pore sizes and porosities ranging from 6.8 to 22 nm and 15.4% to 38.5%, respectively. With 38.5% apparent porosity and an average pore size of 22 nm, the poly(1,4-butanediol diacrylate) (pBDDA) separator takes up 127% liquid electrolyte, resulting in an ionic conductivity of 1.98 mS cm −1 , which is greater than in conventional Celgard 2500. Lithium ion battery half cells consisting of LiNi 0.5 Mn 0.3 Co 0.2 O 2 cathodes and pBDDA separators were shown to undergo reversible charge/discharge cycling with an average discharge capacity of 142 mA h g −1 and a capacity retention of 98.4% over 100 cycles – comparable to cells using state-of-the-art separators. Moreover, similar discharge capacities were achieved in rate performance tests due to the high ionic conductivity and electrolyte uptake of the film. The pBDDA separators were shown to be thermally stable to 374 °C, lack low temperature thermal transitions that can compromise cell safety, and exhibit no thermal shrinkage up to 150 °C. 
    more » « less