skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Influence of Temperature and CO 2 On Plasma‐membrane Permeability to CO 2 and HCO 3 − in the Marine Haptophytes Emiliania huxleyi and Calcidiscus leptoporus (Prymnesiophyceae)
Membrane permeabilities to CO2and HCO3constrain the function of CO2concentrating mechanisms that algae use to supply inorganic carbon for photosynthesis. In diatoms and green algae, plasma membranes are moderately to highly permeable to CO2but effectively impermeable to HCO3. Here, CO2and HCO3membrane permeabilities were measured using an18O‐exchange technique on two species of haptophyte algae,Emiliania huxleyiandCalcidiscus leptoporus, which showed that the plasma membranes of these species are also highly permeable to CO2(0.006–0.02 cm · s−1) but minimally permeable to HCO3. Increased temperature and CO2generally increased CO2membrane permeabilities in both species, possibly due to changes in lipid composition or CO2channel proteins. Changes in CO2membrane permeabilities showed no association with the density of calcium carbonate coccoliths surrounding the cell, which could potentially impede passage of compounds. Haptophyte plasma‐membrane permeabilities to CO2were somewhat lower than those of diatoms but generally higher than membrane permeabilities of green algae. One caveat of these measurements is that the model used to interpret18O‐exchange data assumes that carbonic anhydrase, which catalyzes18O‐exchange, is homogeneously distributed in the cell. The implications of this assumption were tested using a two‐compartment model with an inhomogeneous distribution of carbonic anhydrase to simulate18O‐exchange data and then inferring plasma‐membrane CO2permeabilities from the simulated data. This analysis showed that the inferred plasma‐membrane CO2permeabilities are minimal estimates but should be quite accurate under most conditions.  more » « less
Award ID(s):
1744760
PAR ID:
10361770
Author(s) / Creator(s):
 ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Phycology
Volume:
56
Issue:
5
ISSN:
0022-3646
Page Range / eLocation ID:
p. 1283-1294
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Marine diatoms are key primary producers across diverse habitats in the global ocean. Diatoms rely on a biophysical carbon concentrating mechanism (CCM) to supply high concentrations of CO2around their carboxylating enzyme, RuBisCO. The necessity and energetic cost of the CCM are likely to be highly sensitive to temperature, as temperature impacts CO2concentration, diffusivity, and the kinetics of CCM components. Here, we used membrane inlet mass spectrometry (MIMS) and modeling to capture temperature regulation of the CCM in the diatomPhaeodactylum tricornutum (Pt). We found that enhanced carbon fixation rates byPtat elevated temperatures were accompanied by increased CCM activity capable of maintaining RuBisCO close to CO2saturation but that the mechanism varied. At 10 and 18 °C, diffusion of CO2into the cell, driven byPt’s ‘chloroplast pump’ was the major inorganic carbon source. However, at 18 °C, upregulation of the chloroplast pump enhanced (while retaining the proportion of) both diffusive CO2and active HCO3uptake into the cytosol, and significantly increased chloroplast HCO3concentrations. In contrast, at 25 °C, compared to 18 °C, the chloroplast pump had only a slight increase in activity. While diffusive uptake of CO2into the cell remained constant, active HCO3uptake across the cell membrane increased resulting inPtdepending equally on both CO2and HCO3as inorganic carbon sources. Despite changes in the CCM, the overall rate of active carbon transport remained double that of carbon fixation across all temperatures tested. The implication of the energetic cost of thePtCCM in response to increasing temperatures was discussed. 
    more » « less
  2. We present new HCN and HCO+(J= 3–2) images of the nearby star-forming galaxies (SFGs) NGC 3351, NGC 3627, and NGC 4321. The observations, obtained with the Morita ALMA Compact Array, have a spatial resolution of ∼290–440 pc and resolve the innerRgal ≲ 0.6–1 kpc of the targets, as well as the southern bar end of NGC 3627. We complement this data set with publicly available images of lower excitation lines of HCN, HCO+, and CO and analyse the behaviour of a representative set of line ratios: HCN(3–2)/HCN(1–0), HCN(3–2)/HCO+(3–2), HCN(1–0)/CO(2–1), and HCN(3–2)/CO(2–1). Most of these ratios peak at the galaxy centres and decrease outwards. We compare the HCN and HCO+observations with a grid of one-phase, non-local thermodynamic equilibrium (non-LTE) radiative transfer models and find them compatible with models that predict subthermally excited and optically thick lines. We study the systematic variations of the line ratios across the targets as a function of the stellar surface density (Σstar), the intensity-weighted CO(2–1) (⟨ICO⟩), and the star formation rate surface density (ΣSFR). We find no apparent correlation with ΣSFR, but positive correlations with the other two parameters, which are stronger in the case of ⟨ICO⟩. The HCN/CO–⟨ICO⟩ relations show ≲0.3 dex galaxy-to-galaxy offsets, with HCN(3–2)/CO(2–1)–⟨ICO⟩ being ∼2 times steeper than HCN(1–0)/CO(2–1). In contrast, the HCN(3–2)/HCN(1–0)–⟨ICO⟩ relation exhibits a tighter alignment between galaxies. We conclude that the overall behaviour of the line ratios cannot be ascribed to variations in a single excitation parameter (e.g., density or temperature). 
    more » « less
  3. Biddle, Jennifer F (Ed.)
    ABSTRACT Autotrophic bacteria are able to fix CO2in a great diversity of habitats, even though this dissolved gas is relatively scarce at neutral pH and above. As many of these bacteria rely on CO2fixation by ribulose 1,5-bisphospate carboxylase/oxygenase (RubisCO) for biomass generation, they must compensate for the catalytical constraints of this enzyme with CO2-concentrating mechanisms (CCMs). CCMs consist of CO2and HCO3transporters and carboxysomes. Carboxysomes encapsulate RubisCO and carbonic anhydrase (CA) within a protein shell and are essential for the operation of a CCM in autotrophicBacteriathat use the Calvin-Benson-Basham cycle. Members of the genusThiomicrospiralack genes homologous to those encoding previously described CA, and prior to this work, the mechanism of function for their carboxysomes was unclear. In this paper, we provide evidence that a member of the recently discovered iota family of carbonic anhydrase enzymes (ιCA) plays a role in CO2fixation by carboxysomes from members ofThiomicrospiraand potentially otherBacteria. Carboxysome enrichments fromThiomicrospira pelophilaandThiomicrospira aerophilawere found to have CA activity and contain ιCA, which is encoded in their carboxysome loci. When the gene encoding ιCA was interrupted inT. pelophila, cells could no longer grow under low-CO2conditions, and CA activity was no longer detectable in their carboxysomes. WhenT. pelophilaιCA was expressed in a strain ofEscherichia colilacking native CA activity, this strain recovered an ability to grow under low CO2conditions, and CA activity was present in crude cell extracts prepared from this strain. IMPORTANCEHere, we provide evidence that iota carbonic anhydrase (ιCA) plays a role in CO2fixation by some organisms with CO2-concentrating mechanisms; this is the first time that ιCA has been detected in carboxysomes. While ιCA genes have been previously described in other members of bacteria, this is the first description of a physiological role for this type of carbonic anhydrase in this domain. Given its distribution in alkaliphilic autotrophic bacteria, ιCA may provide an advantage to organisms growing at high pH values and could be helpful for engineering autotrophic organisms to synthesize compounds of industrial interest under alkaline conditions. 
    more » « less
  4. Carboxysomes, responsible for a substantial fraction of CO 2 fixation on Earth, are proteinaceous microcompartments found in many autotrophic members of domain Bacteria , primarily from the phyla Proteobacteria and Cyanobacteria . Carboxysomes facilitate CO 2 fixation by the Calvin-Benson-Bassham (CBB) cycle, particularly under conditions where the CO 2 concentration is variable or low, or O 2 is abundant. These microcompartments are composed of an icosahedral shell containing the enzymes ribulose 1,5-carboxylase/oxygenase (RubisCO) and carbonic anhydrase. They function as part of a CO 2 concentrating mechanism, in which cells accumulate HCO 3 − in the cytoplasm via active transport, HCO 3 − enters the carboxysomes through pores in the carboxysomal shell proteins, and carboxysomal carbonic anhydrase facilitates the conversion of HCO 3 − to CO 2 , which RubisCO fixes. Two forms of carboxysomes have been described: α-carboxysomes and β-carboxysomes, which arose independently from ancestral microcompartments. The α-carboxysomes present in Proteobacteria and some Cyanobacteria have shells comprised of four types of proteins [CsoS1 hexamers, CsoS4 pentamers, CsoS2 assembly proteins, and α-carboxysomal carbonic anhydrase (CsoSCA)], and contain form IA RubisCO (CbbL and CbbS). In the majority of cases, these components are encoded in the genome near each other in a gene locus, and transcribed together as an operon. Interestingly, genome sequencing has revealed some α-carboxysome loci that are missing genes encoding one or more of these components. Some loci lack the genes encoding RubisCO, others lack a gene encoding carbonic anhydrase, some loci are missing shell protein genes, and in some organisms, genes homologous to those encoding the carboxysome-associated carbonic anhydrase are the only carboxysome-related genes present in the genome. Given that RubisCO, assembly factors, carbonic anhydrase, and shell proteins are all essential for carboxysome function, these absences are quite intriguing. In this review, we provide an overview of the most recent studies of the structural components of carboxysomes, describe the genomic context and taxonomic distribution of atypical carboxysome loci, and propose functions for these variants. We suggest that these atypical loci are JEEPs, which have modified functions based on the presence of Just Enough Essential Parts. 
    more » « less
  5. Bose, Arpita (Ed.)
    ABSTRACT Using dissolved inorganic carbon (DIC) as a major carbon source, as autotrophs do, is complicated by the bedeviling nature of this substance. Autotrophs using the Calvin-Benson-Bassham cycle (CBB) are known to make use of a toolkit comprised of DIC transporters and carbonic anhydrase enzymes (CA) to facilitate DIC fixation. This minireview provides a brief overview of the current understanding of how toolkit function facilitates DIC fixation inCyanobacteriaand someProteobacteriausing the CBB and continues with a survey of the DIC toolkit gene presence in organisms using different versions of the CBB and other autotrophic pathways (reductive citric acid cycle, Wood-Ljungdahl pathway, hydroxypropionate bicycle, hydroxypropionate-hydroxybutyrate cycle, and dicarboxylate-hydroxybutyrate cycle). The potential function of toolkit gene products in these organisms is discussed in terms of CO2and HCO3supply from the environment and demand by the autotrophic pathway. The presence of DIC toolkit genes in autotrophic organisms beyond those using the CBB suggests the relevance of DIC metabolism to these organisms and provides a basis for better engineering of these organisms for industrial and agricultural purposes. 
    more » « less