skip to main content


Title: Temperature sensitivity of carbon concentrating mechanisms in the diatom Phaeodactylum tricornutum
Abstract

Marine diatoms are key primary producers across diverse habitats in the global ocean. Diatoms rely on a biophysical carbon concentrating mechanism (CCM) to supply high concentrations of CO2around their carboxylating enzyme, RuBisCO. The necessity and energetic cost of the CCM are likely to be highly sensitive to temperature, as temperature impacts CO2concentration, diffusivity, and the kinetics of CCM components. Here, we used membrane inlet mass spectrometry (MIMS) and modeling to capture temperature regulation of the CCM in the diatomPhaeodactylum tricornutum (Pt). We found that enhanced carbon fixation rates byPtat elevated temperatures were accompanied by increased CCM activity capable of maintaining RuBisCO close to CO2saturation but that the mechanism varied. At 10 and 18 °C, diffusion of CO2into the cell, driven byPt’s ‘chloroplast pump’ was the major inorganic carbon source. However, at 18 °C, upregulation of the chloroplast pump enhanced (while retaining the proportion of) both diffusive CO2and active HCO3uptake into the cytosol, and significantly increased chloroplast HCO3concentrations. In contrast, at 25 °C, compared to 18 °C, the chloroplast pump had only a slight increase in activity. While diffusive uptake of CO2into the cell remained constant, active HCO3uptake across the cell membrane increased resulting inPtdepending equally on both CO2and HCO3as inorganic carbon sources. Despite changes in the CCM, the overall rate of active carbon transport remained double that of carbon fixation across all temperatures tested. The implication of the energetic cost of thePtCCM in response to increasing temperatures was discussed.

 
more » « less
Award ID(s):
1744645
NSF-PAR ID:
10400678
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Photosynthesis Research
Volume:
156
Issue:
2
ISSN:
0166-8595
Page Range / eLocation ID:
p. 205-215
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Microalgae and cyanobacteria contribute roughly half of the global photosynthetic carbon assimilation. Faced with limited access to CO2in aquatic environments, which can vary daily or hourly, these microorganisms have evolved use of an efficient CO2concentrating mechanism (CCM) to accumulate high internal concentrations of inorganic carbon (Ci) to maintain photosynthetic performance. For eukaryotic algae, a combination of molecular, genetic and physiological studies using the model organismChlamydomonas reinhardtii, have revealed the function and molecular characteristics of many CCM components, including active Ciuptake systems. Fundamental to eukaryotic Ciuptake systems are Citransporters/channels located in membranes of various cell compartments, which together facilitate the movement of Cifrom the environment into the chloroplast, where primary CO2assimilation occurs. Two putative plasma membrane Citransporters, HLA3 and LCI1, are reportedly involved in active Ciuptake. Based on previous studies, HLA3 clearly plays a meaningful role in HCO3transport, but the function of LCI1 has not yet been thoroughly investigated so remains somewhat obscure. Here we report a crystal structure of the full‐length LCI1 membrane protein to reveal LCI1 structural characteristics, as well asin vivophysiological studies in an LCI1 loss‐of‐function mutant to reveal the Cispecies preference for LCI1. Together, these new studies demonstrate LCI1 plays an important role in active CO2uptake and that LCI1 likely functions as a plasma membrane CO2channel, possibly a gated channel.

     
    more » « less
  2. Abstract

    Many eukaryotic photosynthetic organisms enhance their carbon uptake by supplying concentrated CO2to the CO2-fixing enzyme Rubisco in an organelle called the pyrenoid. Ongoing efforts seek to engineer this pyrenoid-based CO2-concentrating mechanism (PCCM) into crops to increase yields. Here we develop a computational model for a PCCM on the basis of the postulated mechanism in the green algaChlamydomonas reinhardtii. Our model recapitulates allChlamydomonasPCCM-deficient mutant phenotypes and yields general biophysical principles underlying the PCCM. We show that an effective and energetically efficient PCCM requires a physical barrier to reduce pyrenoid CO2leakage, as well as proper enzyme localization to reduce futile cycling between CO2and HCO3. Importantly, our model demonstrates the feasibility of a purely passive CO2uptake strategy at air-level CO2, while active HCO3uptake proves advantageous at lower CO2levels. We propose a four-step engineering path to increase the rate of CO2fixation in the plant chloroplast up to threefold at a theoretical cost of only 1.3 ATP per CO2fixed, thereby offering a framework to guide the engineering of a PCCM into land plants.

     
    more » « less
  3. Membrane permeabilities to CO2and HCO3constrain the function of CO2concentrating mechanisms that algae use to supply inorganic carbon for photosynthesis. In diatoms and green algae, plasma membranes are moderately to highly permeable to CO2but effectively impermeable to HCO3. Here, CO2and HCO3membrane permeabilities were measured using an18O‐exchange technique on two species of haptophyte algae,Emiliania huxleyiandCalcidiscus leptoporus, which showed that the plasma membranes of these species are also highly permeable to CO2(0.006–0.02 cm · s−1) but minimally permeable to HCO3. Increased temperature and CO2generally increased CO2membrane permeabilities in both species, possibly due to changes in lipid composition or CO2channel proteins. Changes in CO2membrane permeabilities showed no association with the density of calcium carbonate coccoliths surrounding the cell, which could potentially impede passage of compounds. Haptophyte plasma‐membrane permeabilities to CO2were somewhat lower than those of diatoms but generally higher than membrane permeabilities of green algae. One caveat of these measurements is that the model used to interpret18O‐exchange data assumes that carbonic anhydrase, which catalyzes18O‐exchange, is homogeneously distributed in the cell. The implications of this assumption were tested using a two‐compartment model with an inhomogeneous distribution of carbonic anhydrase to simulate18O‐exchange data and then inferring plasma‐membrane CO2permeabilities from the simulated data. This analysis showed that the inferred plasma‐membrane CO2permeabilities are minimal estimates but should be quite accurate under most conditions.

     
    more » « less
  4. Summary

    In response to high CO2environmental variability, green algae, such asChlamydomonas reinhardtii, have evolved multiple physiological states dictated by external CO2concentration. Genetic and physiological studies demonstrated that at least three CO2physiological states, a high CO2(0.5–5% CO2), a low CO2(0.03–0.4% CO2) and a very low CO2(< 0.02% CO2) state, exist inChlamydomonas. To acclimate in the low and very low CO2states,Chlamydomonasinduces a sophisticated strategy known as a CO2‐concentrating mechanism (CCM) that enables proliferation and survival in these unfavorable CO2environments. Active uptake of Cifrom the environment is a fundamental aspect in theChlamydomonasCCM, and consists of CO2and HCO3uptake systems that play distinct roles in low and very low CO2acclimation states. LCI1, a putative plasma membrane Citransporter, has been linked through conditional overexpression to active Ciuptake. However, both the role of LCI1 in various CO2acclimation states and the species of Ci, HCO3or CO2, that LCI1 transports remain obscure. Here we report the impact of anLCI1loss‐of‐function mutant on growth and photosynthesis in different genetic backgrounds at multiple pH values. These studies show that LCI1 appears to be associated with active CO2uptake in low CO2, especially above air‐level CO2, and that any LCI1 role in very low CO2is minimal.

     
    more » « less
  5. Abstract

    Carbon isotope biosignatures preserved in the Precambrian geologic record are primarily interpreted to reflect ancient cyanobacterial carbon fixation catalyzed by Form I RuBisCO enzymes. The average range of isotopic biosignatures generally follows that produced by extant cyanobacteria. However, this observation is difficult to reconcile with several environmental (e.g., temperature, pH, and CO2concentrations), molecular, and physiological factors that likely would have differed during the Precambrian and can produce fractionation variability in contemporary organisms that meets or exceeds that observed in the geologic record. To test a specific range of genetic and environmental factors that may impact ancient carbon isotope biosignatures, we engineered a mutant strain of the model cyanobacteriumSynechococcus elongatusPCC 7942 that overexpresses RuBisCO across varying atmospheric CO2concentrations. We hypothesized that changes in RuBisCO expression would impact the net rates of intracellular CO2fixation versus CO2supply, and thus whole‐cell carbon isotope discrimination. In particular, we investigated the impacts of RuBisCO overexpression under changing CO2concentrations on both carbon isotope biosignatures and cyanobacterial physiology, including cell growth and oxygen evolution rates. We found that an increased pool of active RuBisCO does not significantly affect the13C/12C isotopic discrimination (εp) at all tested CO2concentrations, yielding εpof ≈ 23‰ for both wild‐type and mutant strains at elevated CO2. We therefore suggest that expected variation in cyanobacterial RuBisCO expression patterns should not confound carbon isotope biosignature interpretation. A deeper understanding of environmental, evolutionary, and intracellular factors that impact cyanobacterial physiology and isotope discrimination is crucial for reconciling microbially driven carbon biosignatures with those preserved in the geologic record.

     
    more » « less