skip to main content

Title: Temperature sensitivity of carbon concentrating mechanisms in the diatom Phaeodactylum tricornutum
Abstract

Marine diatoms are key primary producers across diverse habitats in the global ocean. Diatoms rely on a biophysical carbon concentrating mechanism (CCM) to supply high concentrations of CO2around their carboxylating enzyme, RuBisCO. The necessity and energetic cost of the CCM are likely to be highly sensitive to temperature, as temperature impacts CO2concentration, diffusivity, and the kinetics of CCM components. Here, we used membrane inlet mass spectrometry (MIMS) and modeling to capture temperature regulation of the CCM in the diatomPhaeodactylum tricornutum (Pt). We found that enhanced carbon fixation rates byPtat elevated temperatures were accompanied by increased CCM activity capable of maintaining RuBisCO close to CO2saturation but that the mechanism varied. At 10 and 18 °C, diffusion of CO2into the cell, driven byPt’s ‘chloroplast pump’ was the major inorganic carbon source. However, at 18 °C, upregulation of the chloroplast pump enhanced (while retaining the proportion of) both diffusive CO2and active HCO3uptake into the cytosol, and significantly increased chloroplast HCO3concentrations. In contrast, at 25 °C, compared to 18 °C, the chloroplast pump had only a slight increase in activity. While diffusive uptake of CO2into the cell remained constant, active HCO3uptake across the cell membrane increased resulting inPtdepending equally on both CO2and HCO3as inorganic carbon sources. Despite more » changes in the CCM, the overall rate of active carbon transport remained double that of carbon fixation across all temperatures tested. The implication of the energetic cost of thePtCCM in response to increasing temperatures was discussed.

« less
Authors:
;
Publication Date:
NSF-PAR ID:
10400678
Journal Name:
Photosynthesis Research
Volume:
156
Issue:
2
Page Range or eLocation-ID:
p. 205-215
ISSN:
0166-8595
Publisher:
Springer Science + Business Media
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Many eukaryotic photosynthetic organisms enhance their carbon uptake by supplying concentrated CO2to the CO2-fixing enzyme Rubisco in an organelle called the pyrenoid. Ongoing efforts seek to engineer this pyrenoid-based CO2-concentrating mechanism (PCCM) into crops to increase yields. Here we develop a computational model for a PCCM on the basis of the postulated mechanism in the green algaChlamydomonas reinhardtii. Our model recapitulates allChlamydomonasPCCM-deficient mutant phenotypes and yields general biophysical principles underlying the PCCM. We show that an effective and energetically efficient PCCM requires a physical barrier to reduce pyrenoid CO2leakage, as well as proper enzyme localization to reduce futile cycling between CO2and HCO3. Importantly, our model demonstrates the feasibility of a purely passive CO2uptake strategy at air-level CO2, while active HCO3uptake proves advantageous at lower CO2levels. We propose a four-step engineering path to increase the rate of CO2fixation in the plant chloroplast up to threefold at a theoretical cost of only 1.3 ATP per CO2fixed, thereby offering a framework to guide the engineering of a PCCM into land plants.

  2. Abstract

    Nitrogen (N) is a limiting nutrient in vast regions of the world’s oceans, yet the sources of N available to various phytoplankton groups remain poorly understood. In this study, we investigated inorganic carbon (C) fixation rates and nitrate (NO3), ammonium (NH4+) and urea uptake rates at the single cell level in photosynthetic pico-eukaryotes (PPE) and the cyanobacteriaProchlorococcusandSynechococcus. To that end, we used dual15N and13C-labeled incubation assays coupled to flow cytometry cell sorting and nanoSIMS analysis on samples collected in the North Pacific Subtropical Gyre (NPSG) and in the California Current System (CCS). Based on these analyses, we found that photosynthetic growth rates (based on C fixation) of PPE were higher in the CCS than in the NSPG, while the opposite was observed forProchlorococcus. Reduced forms of N (NH4+and urea) accounted for the majority of N acquisition for all the groups studied. NO3represented a reduced fraction of total N uptake in all groups but was higher in PPE (17.4 ± 11.2% on average) than inProchlorococcusandSynechococcus(4.5 ± 6.5 and 2.9 ± 2.1% on average, respectively). This may in part explain the contrasting biogeography of these picoplankton groups. Moreover, single cell analyses reveal that cell-to-cell heterogeneity within picoplankton groups was significantly greater for NO3uptake than for C fixationmore »and NH4+uptake. We hypothesize that cellular heterogeneity in NO3uptake within groups facilitates adaptation to the fluctuating availability of NO3in the environment.

    « less
  3. Abstract

    The oldest and most wide-ranging signal of biological activity (biosignature) on our planet is the carbon isotope composition of organic materials preserved in rocks. These biosignatures preserve the long-term evolution of the microorganism-hosted metabolic machinery responsible for producing deviations in the isotopic compositions of inorganic and organic carbon. Despite billions of years of ecosystem turnover, evolutionary innovation, organismic complexification, and geological events, the organic carbon that is a residuum of the global marine biosphere in the rock record tells an essentially static story. The ~25‰ mean deviation between inorganic and organic13C/12C values has remained remarkably unchanged over >3.5 billion years. The bulk of this record is conventionally attributed to early-evolved, RuBisCO-mediated CO2fixation that, in extant oxygenic phototrophs, produces comparable isotopic effects and dominates modern primary production. However, billions of years of environmental transition, for example, in the progressive oxygenation of the Earth’s atmosphere, would be expected to have accompanied shifts in the predominant RuBisCO forms as well as enzyme-level adaptive responses in RuBisCO CO2-specificity. These factors would also be expected to result in preserved isotopic signatures deviating from those produced by extant RuBisCO in oxygenic phototrophs. Why does the bulk carbon isotope record not reflect these expected environmental transitionsmore »and evolutionary innovations? Here, we discuss this apparent discrepancy and highlight the need for greater quantitative understanding of carbon isotope fractionation behavior in extant metabolic pathways. We propose novel, laboratory-based approaches to reconstructing ancestral states of carbon metabolisms and associated enzymes that can constrain isotopic biosignature production in ancient biological systems. Together, these strategies are crucial for integrating the complementary toolsets of biological and geological sciences and for interpretation of the oldest record of life on Earth.

    « less
  4. Colwellia psychrerythraea34H is a model psychrophilic bacterium found in the cold ocean—polar sediments, sea ice, and the deep sea. Although the genomes of such psychrophiles have been sequenced, their metabolic strategies at low temperature have not been quantified. We measured the metabolic fluxes and gene expression of 34H at 4 °C (the mean global-ocean temperature and a normal-growth temperature for 34H), making comparative analyses at room temperature (above its upper-growth temperature of 18 °C) and with mesophilicEscherichia coli. When grown at 4 °C, 34H utilized multiple carbon substrates without catabolite repression or overflow byproducts; its anaplerotic pathways increased flux network flexibility and enabled CO2fixation. In glucose-only medium, the Entner–Doudoroff (ED) pathway was the primary glycolytic route; in lactate-only medium, gluconeogenesis and the glyoxylate shunt became active. In comparison,E. coli, cold stressed at 4 °C, had rapid glycolytic fluxes but no biomass synthesis. At their respective normal-growth temperatures, intracellular concentrations of TCA cycle metabolites (α-ketoglutarate, succinate, malate) were 4–17 times higher in 34H than inE. coli, while levels of energy molecules (ATP, NADH, NADPH) were 10- to 100-fold lower. Experiments withE. colimutants supported the thermodynamic advantage of the ED pathway at cold temperature. Heat-stressed 34H at room temperature (2 hours) revealedmore »significant down-regulation of genes associated with glycolytic enzymes and flagella, while 24 hours at room temperature caused irreversible cellular damage. We suggest that marine heterotrophic bacteria in general may rely upon simplified metabolic strategies to overcome thermodynamic constraints and thrive in the cold ocean.

    « less
  5. Abstract

    N2fixation constitutes an important new nitrogen source in the open sea. One group of filamentous N2fixing cyanobacteria (Richelia intracellularis, hereafterRichelia)form symbiosis with a few genera of diatoms. High rates of N2fixation and carbon (C) fixation have been measured in the presence of diatom-Richeliasymbioses. However, it is unknown how partners coordinate C fixation and how the symbiont sustains high rates of N2fixation. Here, both the N2and C fixation in wild diatom-Richeliapopulations are reported. Inhibitor experiments designed to inhibit host photosynthesis, resulted in lower estimated growth and depressed C and N2fixation, suggesting that despite the symbionts ability to fix their own C, they must still rely on their respective hosts for C. Single cell analysis indicated that up to 22% of assimilated C in the symbiont is derived from the host, whereas 78–91% of the host N is supplied from their symbionts. A size-dependent relationship is identified where larger cells have higher N2and C fixation, and only N2fixation was light dependent. Using the single cell measures, the N-rich phycosphere surrounding these symbioses was estimated and contributes directly and rapidly to the surface ocean rather than the mesopelagic, even at high estimated sinking velocities (<10 m d−1). Several eco-physiological parameters necessary for incorporatingmore »symbiotic N2fixing populations into larger basin scale biogeochemical models (i.e., N and C cycles) are provided.

    « less