skip to main content

Title: Electrodeposition of Ru onto Ru and Au Seed Layers from Solutions of Ruthenium Nitrosyl Sulfate and Ruthenium Chloride

The electrodeposition of Ru was investigated from solutions of ruthenium(III) nitrosyl sulfate and ruthenium(III) chloride onto seed layers of epitaxial and polycrystalline Ru and epitaxial Au. Using both galvanostatic and potentiostatic deposition modes, metallic Ru was found to electrodeposit as a porous layer comprised of (0001) oriented Ru crystallites, the presence of which was discovered and confirmed by X-ray and scanning transmission and transmission electron microscope (S/TEM) analyses. This finding was independent of the Ru salt and seed layer used. Using X-ray reflectivity (XRR), the average film densityρeffof the porous electrodeposited Ru layer was measured as less than the density of bulk RuρRu,bulk(14.414 g cm−3). Increasing the magnitude of the applied current density from −100μA cm−2to −10 mA cm−2in solutions of Ru nitrosyl sulfate increased theρefffrom 7.4 g cm−3to 9.7 g cm−2while the current efficiency decreased from 9.4% to 4.3%.

Authors:
; ; ; ;
Award ID(s):
1740270
Publication Date:
NSF-PAR ID:
10361798
Journal Name:
Journal of The Electrochemical Society
Volume:
168
Issue:
5
Page Range or eLocation-ID:
Article No. 052504
ISSN:
0013-4651
Publisher:
The Electrochemical Society
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a detection of 21 cm emission from large-scale structure (LSS) between redshift 0.78 and 1.43 made with the Canadian Hydrogen Intensity Mapping Experiment. Radio observations acquired over 102 nights are used to construct maps that are foreground filtered and stacked on the angular and spectral locations of luminous red galaxies (LRGs), emission-line galaxies (ELGs), and quasars (QSOs) from the eBOSS clustering catalogs. We find decisive evidence for a detection when stacking on all three tracers of LSS, with the logarithm of the Bayes factor equal to 18.9 (LRG), 10.8 (ELG), and 56.3 (QSO). An alternative frequentist interpretation, based on the likelihood ratio test, yields a detection significance of 7.1σ(LRG), 5.7σ(ELG), and 11.1σ(QSO). These are the first 21 cm intensity mapping measurements made with an interferometer. We constrain the effective clustering amplitude of neutral hydrogen (Hi), defined asHI103ΩHIbHI+fμ2, where ΩHiis the cosmic abundance of Hi,bHiis the linear bias of Hi, and 〈fμ2〉 = 0.552 encodes the effect of redshift-space distortions at linear order. We findHI=1.510.97+3.60for LRGs (z=more »0.84),HI=6.763.79+9.04for ELGs (z= 0.96), andHI=1.680.67+1.10for QSOs (z= 1.20), with constraints limited by modeling uncertainties at nonlinear scales. We are also sensitive to bias in the spectroscopic redshifts of each tracer, and we find a nonzero bias Δv= − 66 ± 20 km s−1for the QSOs. We split the QSO catalog into three redshift bins and have a decisive detection in each, with the upper bin atz= 1.30 producing the highest-redshift 21 cm intensity mapping measurement thus far.

    « less
  2. Abstract

    We develop a Newtonian model of a deep tidal disruption event (TDE), for which the pericenter distance of the star,rp, is well within the tidal radius of the black hole,rt, i.e., whenβrt/rp≫ 1. We find that shocks form forβ≳ 3, but they are weak (with Mach numbers ∼1) for allβ, and that they reach the center of the star prior to the time of maximum adiabatic compression forβ≳ 10. The maximum density and temperature reached during the TDE follow much shallower relations withβthan the previously predictedρmaxβ3andTmaxβ2scalings. Belowβ≃ 10, this shallower dependence occurs because the pressure gradient is dynamically significant before the pressure is comparable to the ram pressure of the free-falling gas, while aboveβ≃ 10, we find that shocks prematurely halt the compression and yield the scalingsρmaxβ1.62andTmaxβ1.12. We find excellent agreement between our results and high-resolution simulations. Our results demonstrate that, in the Newtonian limit, the compression experienced by the star is completely independent of the mass of the black hole. We discuss our results in the context of existing (affine) models, polytropic versus non-polytropic stars, and general relativistic effects, which become important when the pericenter ofmore »the star nears the direct capture radius, atβ∼ 12.5 (2.7) for a solar-like star disrupted by a 106M(107M) supermassive black hole.

    « less
  3. Both thin (55μm) composite and thick (350μm) all active material battery porous electrodes were prepared for estimating the diffusion coefficient of Li+(DLi+)in tellurium (Te) during electrochemical lithiation. Galvanostatic intermittent titration technique (GITT), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) were applied to quantify the chemical lithium solid-state diffusion coefficient within the Te active material in the electrodes. Multiple methods of GITT and EIS were assessed. For the composite Te electrodes, theDLi+was on the order of 10−11cm2s−1from both CV and GITT methods, but 10−9cm2s−1from EIS. For the thick tellurium electrodes, both GITT and EIS resulted in lithium diffusion coefficient estimates in the range of 10−11–10−12cm2s−1. The general trend across all methods that quantified the diffusion coefficient as a function of lithiation of tellurium was that theDLi+decreased rapidly when the Te material was initially lithiated. TheDLi+at the phase transition voltage plateau (∼1.7 V, vs Li/Li+, where both Te and Li2Te were expected) had the lowestDLi+,while theDLi+both before and after the plateau was generally higher. Among all the electrochemical measurements ofDLi+,the modified GITTmore »method with modelling the relaxation region resulted in relatively low scatter in the data, provided values as a function of lithiation, and was well suited to thick electrodes with a flat discharge plateau as was the case herein.

    « less
  4. Abstract

    Ion irradiation is a versatile tool to introduce controlled defects into two-dimensional (2D) MoS2on account of its unique spatial resolution and plethora of ion types and energies available. In order to fully realise the potential of this technique, a holistic understanding of ion-induced defect production in 2D MoS2crystals of different thicknesses is mandatory. X-ray photoelectron spectroscopy, electron diffraction and Raman spectroscopy show that thinner MoS2crystals are more susceptible to radiation damage caused by 225 keV Xe+ions. However, the rate of defect production in quadrilayer and bulk crystals is not significantly different under our experimental conditions. The rate at which S atoms are sputtered as a function of radiation exposure is considerably higher for monolayer MoS2, compared to bulk crystals, leading to MoO3formation. P-doping of MoS2is observed and attributed to the acceptor states introduced by vacancies and charge transfer interactions with adsorbed species. Moreover, the out-of-plane vibrational properties of irradiated MoS2crystals are shown to be strongly thickness-dependent: in mono- and bilayer MoS2, the confinement of phonons by defects results in a blueshift of theA1gmode. Whereas, a redshift is observed in bulk crystals due to attenuation of the effective restoring forces acting on S atoms caused by vacanciesmore »in adjacent MoS2layers. Consequently, theA1gfrequency of tri- and quadrilayer crystals is statistically invariant on account oft competition between phonon confinement effects and interlayer interactions. TheA1glinewidth is observed to decrease in bi- and trilayer crystals after low dose irradiation and is attributed to layer decoupling. This work shows that there is a complex interplay between defect production, crystal thickness and interlayer interactions in MoS2. Our results demonstrate that ion irradiation is an effective tool to modulate the electronic, vibrational and structural properties of MoS2, which may prove beneficial for practical applications.

    « less
  5. Abstract

    We present a chemodynamical study of the Grus I ultra-faint dwarf galaxy (UFD) from medium-resolution (R∼ 11,000) Magellan/IMACS spectra of its individual member stars. We identify eight confirmed members of Grus I, based on their low metallicities and coherent radial velocities, and four candidate members for which only velocities are derived. In contrast to previous work, we find that Grus I has a very low mean metallicity of 〈[Fe/H]〉 = −2.62 ± 0.11 dex, making it one of the most metal-poor UFDs. Grus I has a systemic radial velocity of −143.5 ± 1.2 km s−1and a velocity dispersion ofσrv=2.50.8+1.3km s−1, which results in a dynamical mass ofM1/2(rh)=84+12×105Mand a mass-to-light ratio ofM/LV=440250+650M/L. Under the assumption of dynamical equilibrium, our analysis confirms that Grus I is a dark-matter-dominated UFD (M/L> 80M/L). However, we do not resolve a metallicity dispersion (σ[Fe/H]< 0.44 dex). Our results indicate that Grus I is a fairly typical UFD with parameters that agree with mass–metallicity and metallicity-luminosity trends for faint galaxies. This agreement suggests that Grus I has not lost an especially significant amount of mass from tidal encounters with the Milky Way, in linemore »with its orbital parameters. Intriguingly, Grus I has among the lowest central densities (ρ1/23.52.1+5.7×107Mkpc−3) of the UFDs that are not known to be tidally disrupting. Models of the formation and evolution of UFDs will need to explain the diversity of these central densities, in addition to any diversity in the outer regions of these relic galaxies.

    « less