skip to main content

Title: Mechanisms Determining Diversity of ENSO-Driven Equatorial Precipitation Anomalies

The longitudinal location of precipitation anomalies over the equatorial Pacific shows a distinctive feature with the westernmost location for La Niña, the easternmost location for eastern Pacific (EP) El Niño, and somewhere between for central Pacific (CP) El Niño, even though the center of the sea surface temperature anomaly (SSTA) for La Niña is located slightly east of that of CP El Niño. The mechanisms for such a precipitation diversity were investigated through idealized model simulations and moisture and moist static energy budget analyses. It is revealed that the boundary layer convergence anomalies associated with the precipitation diversity are mainly induced by underlying SSTA through the Lindzen–Nigam mechanism, that is, their longitudinal locations are mainly controlled by the meridional and zonal distributions of the ENSO SSTA. The westward shift of the precipitation anomaly center during La Niña relative to that during CP El Niño is primarily caused by the combined effects of nonlinear zonal moist enthalpy advection anomalies and the Lindzen–Nigam mechanism mentioned above. Such a zonal diversity is further enhanced by the “convection–cloud–longwave radiation” feedback, the SST-induced latent heat flux anomalies, and the advection of mean moist enthalpy by anomalous winds. This diversity in the longitudinal location of precipitation anomalies has contributions to the diversities in the longitudinal locations of anomalous Walker circulation and western North Pacific anomalous anticyclone/cyclone among the three types of ENSO.

more » « less
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Climate
Page Range / eLocation ID:
p. 923-939
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Sea Surface Temperature Anomaly (SSTA) in tropical Atlantic during boreal spring and summer shows two dominant modes: a basin-warming and a meridional dipole mode, respectively. Observational and coupled model simulations indicate that the former induces a Pacific La Niña in the succeeding winter whereas the latter cannot. The basin-warming forcing induces a La Niña through a Kelvin wave response and the associated wind-evaporation-SST-convection (WESC) feedback over the northern Indian Ocean (NIO) and Maritime Continent (MC). Anomalous Kelvin wave easterly interacts with the monsoonal westerly, leading to a warm SSTA and a northwest-southeast oriented heating anomaly in NIO/MC, which further induces easterly and cold SSTA over the equatorial Pacific. In contrast, the dipole forcing has little impact on the Indian and Pacific Oceans due to the offsetting of the Kelvin wave to the asymmetric Atlantic heating. Further observational and modeling studies towards the Tropical North Atlantic (TNA) and Equatorial Atlantic (EA) SSTA modes indicate that the TNA (EA) forcing induces a CP- (EP-) type ENSO. In both cases, the Kelvin wave response and the WESC feedback over the NIO/MC are important in conveying the Atlantic’s impact. The difference lies in distinctive Rossby wave responses – A marked westerly anomaly appears in the equatorial eastern Pacific (EEP) for the TNA forcing (due to its westward location) while no significant wind response is observed in EEP for the EA forcing. The westerly anomaly prevents a cooling tendency in EEP through anomalous zonal and vertical advection according to a mixed-layer heat budget analysis. 
    more » « less
  2. The long-term trend of sea surface salinity (SSS) reveals an intensification of the global hydrological cycle due to human-induced climate change. This study demonstrates that SSS variability can also be used as a measure of terrestrial precipitation on inter-seasonal to inter-annual time scales, and to locate the source of moisture. Seasonal composites during El Niño Southern Oscillation/Indian Ocean Dipole (ENSO/IOD) events are used to understand the variations of moisture transport and precipitation over Australia, and their association with SSS variability. As ENSO/IOD events evolve, patterns of positive or negative SSS anomaly emerge in the Indo-Pacific warm pool region and are accompanied by atmospheric moisture transport anomalies towards Australia. During co-occurring La Niña and negative-IOD events, salty anomalies around the maritime continent (north of Australia) indicate freshwater export and are associated with a significant moisture transport that converges over Australia to create anomalous wet conditions. In contrast, during co-occurring El Niño and positive IOD events, there is the moisture transport divergence anomaly over Australia and results in anomalous dry conditions. The relationship between SSS and atmospheric moisture transport also holds for pure ENSO/IOD events but varies in magnitude and spatial pattern. The significant pattern correlation between the moisture flux divergence and SSS anomaly during the ENSO/IOD events highlights the associated ocean-atmosphere coupling. A case study of the extreme hydroclimatic events of Australia (e.g. 2010-11 Brisbane flood) demonstrates that the changes in SSS occur before the peak of ENSO/IOD events. This raises the prospect that tracking of SSS variability could aid the prediction of Australian rainfall. 
    more » « less
  3. Abstract Interannual variability of tropospheric moisture and temperature are key aspects of Earth’s climate. In this study, monthly mean specific humidity ( q ) and temperature ( T ) variability is analyzed using 12 years of COSMIC-1 (C1) radio occultation retrievals between 60°N and 60°S, with a focus on the tropics. C1 retrievals are relatively independent of the a priori values for q and T within the lower/middle troposphere and upper troposphere/lower stratosphere, respectively. Tropical interannual variability is dominated by El Niño–Southern Oscillation (ENSO). Systematic increases and decreases in zonal mean q and T are observed during the 2009/10 and 2015/16 El Niño events and 2007/08 and 2010/11 La Niña events, respectively. ENSO patterns in q and T are isolated using linear regression, and anomaly magnitudes increase with altitude, reaching a maximum in the upper troposphere. Upper-tropospheric q anomalies expand from the tropics into the midlatitude lower stratosphere, and the T vertical structure is consistent with a moist adiabatic response. C1 results are compared with NCAR’s Whole Atmosphere Community Climate Model (WACCM), forced by observed sea surface temperatures, to evaluate model behavior in an idealized setting. WACCM ENSO variations in q and T generally show consistent behavior with C1 with somewhat smaller magnitudes. Case studies are conducted for major ENSO events during the study period. The spatial variability of q is closely aligned with outgoing longwave radiation (OLR) anomalies. For example, midtropospheric q increases over 100% and OLR decreases over 50 W m −2 over the central Pacific during the 2015/16 El Niño, and substantial regional q and T anomalies are observed throughout the tropics and midlatitudes for each event. 
    more » « less
  4. The South Pacific convergence zone (SPCZ) exhibits well-known spatial displacements in response to anomalous sea surface temperatures (SSTs) associated with the El Niño–Southern Oscillation (ENSO). Although dynamic and thermodynamic changes during ENSO events are consistent with observed SPCZ shifts, explanations for these displacements have been largely qualitative. This study applies a theoretical framework based on generalizing arguments about the relationship between the zonal-mean intertropical convergence zone (ITCZ) and atmospheric energy transport (AET) to 2D, permitting quantification of SPCZ displacements during ENSO. Using either resolved atmospheric energy fluxes or estimates of column-integrated moist energy sources, this framework predicts well the observed SPCZ shifts during ENSO, at least when anomalous ENSO-region SSTs are relatively small. In large-amplitude ENSO events, such as the 1997/98 El Niño, the framework breaks down because of the large change in SPCZ precipitation intensity. The AET framework permits decomposition of the ENSO forcing into various components, such as column radiative heating versus surface turbulent fluxes, and local versus remote contributions. Column energy source anomalies in the equatorial central and eastern Pacific dominate the SPCZ shift. Furthermore, although the radiative flux anomaly is larger than the surface turbulent flux anomaly in the SPCZ region, the radiative flux anomaly, which can be viewed as a feedback on the ENSO forcing, accounts for slightly less than half of SPCZ precipitation anomalies during ENSO. This study also introduces an idealized analytical model used to illustrate AET anomalies during ENSO and to obtain a scaling for the SPCZ response to an anomalous equatorial energy source.

    more » « less
  5. Abstract

    This study presents a description of the El Niño–Southern Oscillation (ENSO) and Pacific Decadal Variability (PDV) in a multicentury preindustrial simulation of the Community Earth System Model Version 2 (CESM2). The model simulates several aspects of ENSO relatively well, including dominant timescale, tropical and extratropical precursors, composite evolution of El Niño and La Niña events, and ENSO teleconnections. The good model representation of ENSO spectral characteristics is consistent with the spatial pattern of the anomalous equatorial zonal wind stress in the model, which results in the correct adjustment timescale of the equatorial thermocline according to the delayed/recharge oscillator paradigms, as also reflected in the realistic time evolution of the equatorial Warm Water Volume. PDV in the model exhibits a pattern that is very similar to the observed, with realistic tropical and South Pacific signatures which were much weaker in some of the CESM2 predecessor models. The tropical component of PDV also shows an association with ENSO decadal modulation which is similar to that found in observations. However, the ENSO amplitude is about 30% larger than observed in the preindustrial CESM2 simulation, and even larger in the historical ensemble, perhaps as a result of anthropogenic influences. In contrast to observations, the largest variability is found in the central Pacific rather than in the eastern Pacific, a discrepancy that somewhat hinders the model's ability to represent a full diversity in El Niño spatial patterns and appears to be associated with an unrealistic confinement of the precipitation anomalies to the western Pacific.

    more » « less