skip to main content


Title: Controls of the Topological Connectivity on the Structural and Functional Complexity of River Networks
Abstract

Catchments are complex systems containing channel networks and hillslopes. Channel networks interact with hillslopes and are pathways for transporting water, sediment, and nutrients. Understanding the branching and flux transport patterns of channel networks is critical for predicting the response of catchments to external forcing such as climate and tectonics. However, factors creating complexities in catchments are not fully understood. Here, we propose a new framework based on multiscale entropy approach to evaluate complexity of catchments using two different representations of channel networks. First, we investigate the structural complexity using the width‐function, which characterizes the spatial arrangement of channels. Second, we utilize the incremental area‐function along the main channel to study the functional complexity that captures the patterns of transport of fluxes. Our analysis reveals stronger controls of topological connectivity on the functional complexity than on structural complexity, indicating unchannelized surface (hillslope) contribution to the increase of heterogeneity in transport processes.

 
more » « less
Award ID(s):
1854452
NSF-PAR ID:
10361942
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
47
Issue:
22
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Wildfire increases the potential connectivity of runoff and sediment throughout watersheds due to greater bare soil, runoff and erosion as compared to pre‐fire conditions. This research examines the connectivity of post‐fire runoff and sediment from hillslopes (<1.5 ha;n= 31) and catchments (<1000 ha;n= 10) within two watersheds (<1500 ha) burned by the 2012 High Park Fire in northcentral Colorado, USA. Our objectives were to: (1) identify sources and quantify magnitudes of post‐fire runoff and erosion at nested hillslopes and watersheds for two rain storms with varied duration, intensity and antecedent precipitation; and (2) assess the factors affecting the magnitude and connectivity of runoff and sediment across spatial scales for these two rain storms. The two summer storms that are the focus of this research occurred during the third summer after burning. The first storm had low intensity rainfall over 11 hours (return interval <1–2 years), whereas the second event had high intensity rainfall over 1 hour (return interval <1–10 years). The lower intensity storm was preceded by high antecedent rainfall and led to low hillslope sediment yields and channel incision at most locations, whereas the high intensity storm led to infiltration‐excess overland flow, high sediment yields, in‐stream sediment deposition and channel substrate fining. For both storms, hillslope‐to‐stream sediment delivery ratios and area‐normalised cross‐sectional channel change increased with the percent of catchment that burned at high severity. For the high intensity storm, hillslope‐to‐stream sediment delivery ratios decreased with unconfined channel length (%). The findings quantify post‐fire connectivity and sediment delivery from hillslopes and streams, and highlight how different types of storms can cause varying magnitues and spatial patterns of sediment transport and deposition from hillslopes through stream channel networks.

     
    more » « less
  2. Abstract

    Spatially integrated transport models have been applied widely to model hydrologic transport. However, we lack simple and process‐based theoretical tools to predict the transport closures—transit time distributions (TTDs) and StorAge Selection (SAS) functions. This limits our ability to infer characteristics of hydrologic systems from tracer observations and to make first‐order estimates of SAS functions in catchments where no tracer data is available. Here we present a theoretical framework linking TTDs and SAS functions to hydraulic groundwater theory at the hillslope scale. For hillslopes where the saturated hydraulic conductivity declines exponentially with depth, analytical solutions for the closures are derived that can be used as hypotheses to test against data. In the simplest form, the hillslope SAS function resembles a uniform or exponential distribution (corresponding to flow pathways in the saturated zone) offset from zero by the storage in the unsaturated zone that does not contribute to discharge. The framework is validated against nine idealized virtual hillslopes constructed using a 2‐D Richards equation‐based model, and against data from tracer experiments in two artificial hillslopes. Modeled internal age, life expectancy, and transit time structures reproduce theoretical predictions. The experimental data also support the theory, though further work is needed to account for the effects of time‐variability. The shape and tailing of TTDs and their power spectra are discussed. The theoretical framework yields several dimensionless numbers that can be used to classify hillslope scale flow and transport dynamics and suggests distinct water age structures for high or low Hillslope number.

     
    more » « less
  3. Abstract

    Hydrologic connectivity refers to the processes and thresholds leading to water transport across a landscape. In dryland ecosystems, runoff production is mediated by the arrangement of vegetation and bare soil patches on hillslopes and the properties of ephemeral channels. In this study, we used runoff measurements at multiple scales in a small (4.67 ha) mixed shrubland catchment of the Chihuahuan Desert to identify controls on and thresholds of hillslope‐channel connectivity. By relating short‐ and long‐term hydrologic records, we also addressed whether observed changes in outlet discharge since 1977 were linked to modifications in hydrologic connectivity. Hillslope runoff production was controlled by the maximum rainfall intensity occurring in a 30‐min interval (I30), with small‐to‐negligible effects of antecedent surface soil moisture, vegetation cover, or slope aspect. AnI30threshold of nearly 10 mm/h activated runoff propagation from the shrubland hillslopes and through the main ephemeral channel, whereas anI30threshold of about 16 mm/h was required for discharge from the catchment outlet. Since storms rarely exceedI30, full hillslope‐channel connectivity occurs infrequently in the mixed shrubland, leading to <2% of the annual precipitation being converted into outlet discharge. Progressive decreases in outlet discharge since 1977 could not be explained by variations in precipitation metrics, includingI30, or the process of woody plant encroachment. Instead, channel modifications from the buildup of sediment behind measurement flumes may have increased transmission losses and reduced outlet discharge. Thus, alterations in channel properties can play an important role in the long‐term (45‐year) variations of rainfall–runoff dynamics of small desert catchments.

     
    more » « less
  4. Abstract

    Understanding the extent to which local factors, including bedrock and structure, govern catchment denudation in mountainous environments as opposed to broader climate or tectonic patterns provides insight into how landscapes evolve as sediment is generated and transported through them, and whether they have approached steady‐state equilibrium. We measured beryllium‐10 (10Be) concentrations in 21 sediment samples from glaciated footwall and hanging wall catchments, including a set of nested catchments, and 12 bedrock samples in the Puga and Tso Morari half‐grabens located in the high‐elevation, arid Zanskar region of northern India. In the Puga half‐graben where catchments are underlain by quartzo‐feldspathic gneissic bedrock, bedrock along catchment divides is eroding very slowly, about 5 m/Ma, due to extreme aridity and10Be concentrations in catchment sediments are the highest (~60–90 × 105atoms/g SiO2) as colluvium accumulates on hillslopes, decoupled from their ephemeral streams. At Puga,10Be concentrations and the average erosion rates of a set of six nested catchments demonstrate that catchment denudation is transport‐limited as sediment stagnates on lower slopes before reaching the catchment outlet. In the Tso Morari half‐graben, gneissic bedrock is also eroding very slowly but10Be concentrations in sediments in catchments underlain by low grade meta‐sedimentary rocks, are significantly lower (~10–35 × 105atoms/g SiO2). In these arid, high‐elevation environments,10Be concentrations in catchment sediments have more to do with bedrock weathering and transport times than steady‐state denudation rates. © 2020 John Wiley & Sons, Ltd.

     
    more » « less
  5. We present a multimodel analysis for mechanistic hypothesis testing in landscape evolution theory. The study site is a watershed with well‐constrained initial and boundary conditions in which a river network locally incised 50 m over the last 13 ka. We calibrate and validate a set of 37 landscape evolution models designed to hierarchically test elements of complexity from four categories: hillslope processes, channel processes, surface hydrology, and representation of geologic materials. Comparison of each model to a base model, which uses stream power channel incision, uniform lithology, hillslope transport by linear diffusion, and surface water discharge proportional to drainage area, serves as a formal test of which elements of complexity improve model performance. Model fit is assessed using an objective function based on a direct difference between observed and simulated modern topography. A hybrid optimization scheme identifies optimal parameters and uncertainty. Multimodel analysis determines which elements of complexity improve simulation performance. Validation tests which model improvements persist when models are applied to an independent watershed. The three most important model elements are (1) spatial variation in lithology (differentiation between shale and glacial till), (2) a fluvial erosion threshold, and (3) a nonlinear relationship between slope and hillslope sediment flux. Due to nonlinear interactions between model elements, some process representations (e.g., nonlinear hillslopes) only become important when paired with the inclusion of other processes (e.g., erosion thresholds). This emphasizes the need for caution in identifying the minimally sufficient process set. Our approach provides a general framework for hypothesis testing in landscape evolution.

     
    more » « less