skip to main content


Title: Transit Times and StorAge Selection Functions in Idealized Hillslopes With Steady Infiltration
Abstract

Spatially integrated transport models have been applied widely to model hydrologic transport. However, we lack simple and process‐based theoretical tools to predict the transport closures—transit time distributions (TTDs) and StorAge Selection (SAS) functions. This limits our ability to infer characteristics of hydrologic systems from tracer observations and to make first‐order estimates of SAS functions in catchments where no tracer data is available. Here we present a theoretical framework linking TTDs and SAS functions to hydraulic groundwater theory at the hillslope scale. For hillslopes where the saturated hydraulic conductivity declines exponentially with depth, analytical solutions for the closures are derived that can be used as hypotheses to test against data. In the simplest form, the hillslope SAS function resembles a uniform or exponential distribution (corresponding to flow pathways in the saturated zone) offset from zero by the storage in the unsaturated zone that does not contribute to discharge. The framework is validated against nine idealized virtual hillslopes constructed using a 2‐D Richards equation‐based model, and against data from tracer experiments in two artificial hillslopes. Modeled internal age, life expectancy, and transit time structures reproduce theoretical predictions. The experimental data also support the theory, though further work is needed to account for the effects of time‐variability. The shape and tailing of TTDs and their power spectra are discussed. The theoretical framework yields several dimensionless numbers that can be used to classify hillslope scale flow and transport dynamics and suggests distinct water age structures for high or low Hillslope number.

 
more » « less
Award ID(s):
2120113 1654194 1344664
NSF-PAR ID:
10445051
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
58
Issue:
5
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Spatially integrated water transport dynamics at the hillslope scale have rarely been observed directly, and underlying physical mechanisms of those dynamics are poorly understood. We present time‐variable transit time distributions and StorAge Selection (SAS) functions for a 28 days tracer experiment conducted at the Landscape Evolution Observatory, Biosphere 2, the University of Arizona, AZ, USA. The observed form of the SAS functions is concave, meaning that older water in the hillslope was preferentially discharged than younger water. The concavity is, in part, explained by the relative importance of advective and diffusive water dynamics and by the geomorphologic structure of the hillslopes. A simple numerical examination illustrates that, for straight plan‐shaped hillslopes, the saturated zone SAS function is concave when the hillslope Péclet (Pe) number is large (and thus when the advective water dynamics are more pronounced). We also investigated the effect of hillslope planform geometry on the saturated zone SAS function using a model and found that the more convergent the plan shape is, the more concave the SAS function is. A numerical examination indicates that the unsaturated zone SAS function is concave for straight and convergent hillslopes when the soil thickness is uniform. The concavity of those subcomponent SAS functions signifies that the hillslope scale SAS function is concave for straight or convergent plan shape hillslopes when the hillslope Pe number is high.

     
    more » « less
  2. Abstract

    Catchment‐scale response functions, such as transit time distribution (TTD) and evapotranspiration time distribution (ETTD), are considered fundamental descriptors of a catchment's hydrologic and ecohydrologic responses to spatially and temporally varying precipitation inputs. Yet, estimating these functions is challenging, especially in headwater catchments where data collection is complicated by rugged terrain, or in semi‐arid or sub‐humid areas where precipitation is infrequent. Hence, we developed practical approaches for estimating both TTD and ETTD from commonly available tracer flux data in hydrologic inflows and outflows without requiring continuous observations. Using the weighted wavelet spectral analysis method of Kirchner and Neal [2013] for δ18O in precipitation and stream water, we calculated TTDs that contribute to streamflow via spatially and temporally variable flow paths in a sub‐humid mountain headwater catchment in Arizona, United States. Our results indicate that composite TTDs (a combination of Piston Flow and Gamma TTDs) most accurately represented this system for periods up to approximately 1 month, and that a Gamma TTD was most appropriate thereafter during both winter and summer seasons and for the overall time‐weighted TTD; a Gamma TTD type was applicable for all periods during the dry season. The TTD results also suggested that old waters, i.e., beyond the applicable tracer range, represented approximately 3% of subsurface contributions to streamflow. For ETTD and using δ18O as a tracer in precipitation and xylem waters, a Gamma ETTD type best matched the observations for all seasons and for the overall time‐weighted pattern, and stable water isotopes were effective tracers for the majority of vegetation source waters. This study addresses a fundamental question in mountain catchment hydrology; namely, how do the spatially and temporally varying subsurface flow paths that support catchment evapotranspiration and streamflow modulate water quantity and quality over space and time.

     
    more » « less
  3. Abstract

    Unsteady transit time distribution (TTD) theory is a promising new approach for merging hydrologic and water quality models at the catchment scale. A major obstacle to widespread adoption of the theory, however, has been the specification of the StorAge Selection (SAS) function, which describes how the selection of water for outflow is biased by age. In this paper we hypothesize that some unsteady hydrologic systems of practical interest can be described, to first‐order, by a “shifted‐uniform” SAS that falls along a continuum between plug flow sampling (for which only the oldest water in storage is sampled for outflow) and uniform sampling (for which water in storage is sampled randomly for outflow). For this choice of SAS function, explicit formulae are derived for the evolving: (a) age distribution of water in storage; (b) age distribution of water in outflow; and (c) breakthrough concentration of a conservative solute under either continuous or impulsive addition. Model predictions conform closely to chloride and deuterium breakthrough curves measured previously in a sloping lysimeter subject to periodic wetting, although refinements of the model are needed to account for the reconfiguration of flow paths at high storage levels (the so‐called inverse storage effect). The analytical results derived in this paper should lower the barrier to applying TTD theory in practice, ease the computational demands associated with simulating solute transport through complex hydrologic systems, and provide physical insights that might not be apparent from traditional numerical solutions of the governing equations.

     
    more » « less
  4. Abstract

    Here we use Richards Equation models of variably saturated soil and bedrock groundwater flow to investigate first‐order patterns of the coupling between soil and bedrock flow systems. We utilize a Monte Carlo sensitivity analysis to identify important hillslope parameters controlling bedrock recharge and then model the transient response of bedrock and soil flow to seasonal precipitation. Our results suggest that hillslopes can be divided into three conceptual zones of groundwater interaction, (a) the zone of lateral unsaturated soil moisture accumulation (upper portion of hillslope), (b) the zone of soil saturation and bedrock recharge (middle of hillslope) and (c) the zone of saturated‐soil lateral flow and bedrock groundwater exfiltration (bottom of hillslope). Zones of groundwater interaction expand upslope during periods of precipitation and drain downslope during dry periods. The amount of water partitioned to the bedrock groundwater system a can be predicted by the ratio of bedrock to soil saturated hydraulic conductivity across a variety of hillslope configurations. Our modelled processes are qualitatively consistent with observations of shallow subsurface saturation and groundwater fluctuation on hillslopes studied in our two experimental watersheds and support a conceptual model of tightly coupled shallow and deep subsurface circulation where groundwater recharge and discharge continuously stores and releases water from longer residence time storage.

     
    more » « less
  5. Abstract

    The advance of a chemical weathering front into the bedrock of a hillslope is often limited by the rate weathering products that can be carried away, maintaining chemical disequilibrium. If the weathering front is within the saturated zone, groundwater flow downslope may affect the rate of transport and weathering—however, weathering also modifies the rock permeability and the subsurface potential gradient that drives lateral groundwater flow. This feedback may help explain why there tends to be neither “runaway weathering” to great depth nor exposed bedrock covering much of the earth and may provide a mechanism for weathering front advance to keep pace with incision of adjacent streams into bedrock. This is the second of a two‐part paper exploring the coevolution of bedrock weathering and lateral flow in hillslopes using a simple low‐dimensional model based on hydraulic groundwater theory. Here, we show how a simplified kinetic model of 1‐D rock weathering can be extended to consider lateral flow in a 2‐D hillslope. Exact and approximate analytical solutions for the location and thickness of weathering within the hillslope are obtained for a number of cases. A location for the weathering front can be found such that lateral flow is able to export weathering products at the rate required to keep pace with stream incision at steady state. Three pathways of solute export are identified: “diffusing up,” where solutes diffuse up and away from the weathering front into the laterally flowing aquifer; “draining down,” where solutes are advected primarily downward into the unweathered bedrock; and “draining along,” where solutes travel laterally within the weathering zone. For each pathway, a different subsurface topography and overall relief of unweathered bedrock within the hillslope is needed to remove solutes at steady state. The relief each pathway requires depends on the rate of stream incision raised to a different power, such that at a given incision rate, one pathway requires minimal relief and, therefore, likely determines the steady‐state hillslope profile.

     
    more » « less