skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modification of Crust and Mantle Lithosphere Beneath the Southern Part of the Eastern North American Passive Margin
Abstract The eastern North American passive margin was modified by Mesozoic rifting. Seismic data from recent deployment of onshore and offshore stations offer a unique opportunity for studying the signature of syn‐rifting and postrifting in lithospheric structures. Using full‐wave ambient noise tomography, we construct a new seismic velocity model for the lithosphere of the southeastern United States. Our model confirms an oceanic‐continental transitional crust over a ∼70 km wide zone across the coastline. Our model reveals (a) a patch of lower‐than‐average mantle lithospheric velocities underlying this transitional crust and (b) a low‐velocity column in the mantle lithosphere beneath the Virginia volcanoes. We propose that anomaly 1 represents cooled enriched mantle that underplated the thinning crust during the initial stages of rifting around 230 Ma. Anomaly 2 likely has a more recent origin in the Eocene and may result from an asthenospheric upwelling induced by a localized lithospheric delamination.  more » « less
Award ID(s):
1736167 1930014
PAR ID:
10361955
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
16
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The New England Appalachians provide a fascinating window into a host of fundamental geological problems. These include the modification of crustal and mantle lithospheric structure via orogenesis, terrane accretion, and continental rifting, the evolution of individual terranes through processes such as channel flow and ductile extrusion, and the causes and consequences of the Northern Appalachian Anomaly (NAA), a prominent geophysical anomaly in the upper mantle. Recent and ongoing deployments of dense seismic arrays in New England are providing images of the crust and upper mantle in unprecedented detail, allowing us to address both new and longstanding science questions. These deployments include the Seismic Experiment for Imaging Structure beneath Connecticut (SEISConn, 2015-2019), the New England Seismic Transects (NEST, 2018-present), and the GEology of New England via Seismic Imaging Studies (GENESIS, 2022-present) arrays. Here we present results from these experiments that are shedding new light on the tectonic evolution of New England and the ways in which structures and processes in the upper mantle can affect the structure of the overlying lithosphere. These include detailed new images of crustal architecture beneath central and southern New England, including a sharp transition from thick (~48 km) crust Laurentia terranes to thin (~32 km) crust beneath Appalachian terranes. The character of this offset beneath the SEISConn and NEST arrays suggests an overlap of two Moho boundaries, forming an overthrust-type structure that may have resulted from reactivation of faults during the compression and shortening associated with the formation of the hypothesized Acadian Altiplano. Beneath SEISConn, there is evidence for multiple relict structures preserved in the lithosphere from past episodes of terrane accretion and suturing, as well as anisotropic layering that constrains the kinematics of past lithospheric deformation events. Beneath the NEST line in central New England, we infer a relatively shallow (~80 km) lithosphere-asthenosphere boundary above the NAA upper mantle geophysical anomaly, providing evidence for lithospheric thinning above a presumed asthenospheric upwelling. Finally, preliminary results suggest layered crustal anisotropy beneath the GENESIS array, perhaps corresponding to a past episode of channel flow in the mid-crust. 
    more » « less
  2. The New England Appalachians provide a fascinating window into a host of fundamental geological problems. These include the modification of crustal and mantle lithospheric structure via orogenesis, terrane accretion, and continental rifting, the evolution of individual terranes through processes such as channel flow and ductile extrusion, and the causes and consequences of the Northern Appalachian Anomaly (NAA), a prominent geophysical anomaly in the upper mantle. Recent and ongoing deployments of dense seismic arrays in New England are providing images of the crust and upper mantle in unprecedented detail, allowing us to address both new and longstanding science questions. These deployments include the Seismic Experiment for Imaging Structure beneath Connecticut (SEISConn, 2015-2019), the New England Seismic Transects (NEST, 2018-present), and the GEology of New England via Seismic Imaging Studies (GENESIS, 2022-present) arrays. Here we present results from these experiments that are shedding new light on the tectonic evolution of New England and the ways in which structures and processes in the upper mantle can affect the structure of the overlying lithosphere. These include detailed new images of crustal architecture beneath central and southern New England, including a sharp transition from thick (~48 km) crust Laurentia terranes to thin (~32 km) crust beneath Appalachian terranes. The character of this offset beneath the SEISConn and NEST arrays suggests an overlap of two Moho boundaries, forming an overthrust-type structure that may have resulted from reactivation of faults during the compression and shortening associated with the formation of the hypothesized Acadian Altiplano. Beneath SEISConn, there is evidence for multiple relict structures preserved in the lithosphere from past episodes of terrane accretion and suturing, as well as anisotropic layering that constrains the kinematics of past lithospheric deformation events. Beneath the NEST line in central New England, we infer a relatively shallow (~80 km) lithosphere-asthenosphere boundary above the NAA upper mantle geophysical anomaly, providing evidence for lithospheric thinning above a presumed asthenospheric upwelling. Finally, preliminary results suggest layered crustal anisotropy beneath the GENESIS array, perhaps corresponding to a past episode of channel flow in the mid-crust. 
    more » « less
  3. The New England Appalachians provide a fascinating window into a host of fundamental geological problems. These include the modification of crustal and mantle lithospheric structure via orogenesis, terrane accretion, and continental rifting, the evolution of individual terranes through processes such as channel flow and ductile extrusion, and the causes and consequences of the Northern Appalachian Anomaly (NAA), a prominent geophysical anomaly in the upper mantle. Recent and ongoing deployments of dense seismic arrays in New England are providing new images of the crust and upper mantle in unprecedented detail, allowing us to address both new and longstanding science questions. These deployments include the Seismic Experiment for Imaging Structure beneath Connecticut (SEISConn, 2016-2019), the New England Seismic Transects (NEST, 2018-present), and the GEology of New England via Seismic Imaging Studies (GENESIS, 2022-present) arrays. Here we present initial results from the SEISConn and NEST experiments and discuss science targets and hypothesis testing for the GENESIS experiment. In combination with constraints from geological investigations (including structural studies and geochronology work), our new seismic investigations are shedding new light on the tectonic evolution of New England and the ways in which upper mantle processes can affect the structure of the overlying lithosphere. 
    more » « less
  4. Abstract The crust and upper mantle beneath the New England Appalachians exhibit a large offset of the Moho across the boundary between Laurentia and accreted terranes and several dipping discontinuities, which reflect Paleozoic or younger tectonic movements. We apply scattered wavefield migration to the SEISConn array deployed across northern Connecticut and obtain insights not previously available from receiver function studies. We resolve a doubled Moho at a previously imaged Moho offset, which may reflect westward thrusting of rifted Grenville crust. The migration image suggests laterally variable velocity contrasts across the Moho, perhaps reflecting mafic underplating during continental rifting. A west‐dipping feature in the lithospheric mantle is further constrained to have a slab‐like geometry, representing a relict slab subducted during an Appalachian orogenic event. Localized low seismic velocities in the upper mantle beneath the eastern portion of the array may indicate that the Northern Appalachian Anomaly extends relatively far to the south. 
    more » « less
  5. Abstract Lithospheric layering contains critical information about continental formation and evolution. However, discrepancies on the depth distributions of lithospheric layers have significantly limited our understanding of possible tectonic connections among the layers. Here, we construct a high‐resolution shear velocity model of eastern North America using full‐wave ambient noise simulation and inversion by integrating onshore and offshore seismic datasets. Our new model reveals large lateral variations of lithosphere thickness approximately across the major tectonic boundaries, strong low‐velocity anomalies underlying the thinner lithosphere, and multiple low‐velocity layers within the continental lithosphere. We suggest that the present mantle lithosphere beneath eastern North America was formed and modified through multiple stages of tectonic processes, among which metasomatism may have significantly contributed to the observed intralithospheric low‐velocity layers. The sharp thickness variation of lithosphere promoted edge‐driven mantle convection, which has been consequently modifying the overlying mantle lithosphere and further sharpening the gradient of lithosphere thickness 
    more » « less