Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The eastern North American passive margin was modified by Mesozoic rifting. Seismic data from recent deployment of onshore and offshore stations offer a unique opportunity for studying the signature of syn‐rifting and postrifting in lithospheric structures. Using full‐wave ambient noise tomography, we construct a new seismic velocity model for the lithosphere of the southeastern United States. Our model confirms an oceanic‐continental transitional crust over a ∼70 km wide zone across the coastline. Our model reveals (a) a patch of lower‐than‐average mantle lithospheric velocities underlying this transitional crust and (b) a low‐velocity column in the mantle lithosphere beneath the Virginia volcanoes. We propose that anomaly 1 represents cooled enriched mantle that underplated the thinning crust during the initial stages of rifting around 230 Ma. Anomaly 2 likely has a more recent origin in the Eocene and may result from an asthenospheric upwelling induced by a localized lithospheric delamination.more » « less
-
Abstract Lithospheric layering contains critical information about continental formation and evolution. However, discrepancies on the depth distributions of lithospheric layers have significantly limited our understanding of possible tectonic connections among the layers. Here, we construct a high‐resolution shear velocity model of eastern North America using full‐wave ambient noise simulation and inversion by integrating onshore and offshore seismic datasets. Our new model reveals large lateral variations of lithosphere thickness approximately across the major tectonic boundaries, strong low‐velocity anomalies underlying the thinner lithosphere, and multiple low‐velocity layers within the continental lithosphere. We suggest that the present mantle lithosphere beneath eastern North America was formed and modified through multiple stages of tectonic processes, among which metasomatism may have significantly contributed to the observed intralithospheric low‐velocity layers. The sharp thickness variation of lithosphere promoted edge‐driven mantle convection, which has been consequently modifying the overlying mantle lithosphere and further sharpening the gradient of lithosphere thicknessmore » « less
-
null (Ed.)The Acadian and Neoacadian orogenies are widely recognized, yet poorly understood, tectono-thermal events in the New England Appalachian Mountains (USA). We quantified two phases of Paleozoic crustal thickening using geochemical proxies. Acadian (425–400 Ma) crustal thickening to 40 km progressed from southeast to northwest. Neoacadian (400–380 Ma) crustal thickening was widely distributed and varied by 30 km (40–70 km) from north to south. Doubly thickened crust and paleoelevations of 5 km or more support the presence of an orogenic plateau at ca. 380–330 Ma in southern New England. Neoacadian crustal thicknesses show a strong correlation with metamorphic isograds, where higher metamorphic grade corresponds to greater paleo-crustal thickness. We suggest that the present metamorphic field gradient was exposed through erosion and orogenic collapse influenced by thermal, isostatic, and gravitational properties related to Neoacadian crustal thickness. Geobarometry in southern New England underestimates crustal thickness and exhumation, suggesting the crust was thinned by tectonic as well as erosional processes.more » « less
An official website of the United States government

Full Text Available