skip to main content


Title: Melting at the Edge of a Slab in the Deepest Mantle
Abstract

We analyzed new recordings ofSPdKSseismic waveforms from a global set of broadband seismograms and horizontal tiltmeters from the Hi‐net array in Japan from 26 earthquakes in the Central American region. The anomalous waveforms are consistent with the presence of at least three ultralow‐velocity zones (ULVZs), on the core‐mantle boundary beneath northern Mexico and the southeastern United States. These ULVZs ring an area of high seismic wave speeds observed in tomographic models that has long been associated with past subduction. Waveform modeling using the PSVaxi method suggests that the ULVZs haveSandPwave velocity decreases of 40% and 10%, respectively. These velocity decreases are likely best explained by a partially molten origin where the melt is generated through melting of mid‐ocean ridge basalt atop the subducted slab.

 
more » « less
Award ID(s):
1723081
NSF-PAR ID:
10361960
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
46
Issue:
14
ISSN:
0094-8276
Page Range / eLocation ID:
p. 8000-8008
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ultralow velocity zones (ULVZs) and seismic anisotropy are both commonly detected in the lowermost mantle at the edges of the two antipodal large low velocity provinces (LLVPs). The preferential occurrences of both ULVZs and anisotropy at LLVP edges are potentially connected to deep mantle dynamics; however, the two phenomena are typically investigated separately. Here we use waveforms from three deep earthquakes to jointly investigate ULVZ structure and lowermost mantle anisotropy near an edge of the Pacific LLVP to the southeast of Hawaii. We model global wave propagation through candidate lowermost mantle structures using AxiSEM3D. Two structures that cause ULVZ‐characteristic postcursors in our data are identified and are modeled as cylindrical ULVZs with radii of ∼1° and ∼3° and velocity reductions of ∼36% and ∼20%. One of these features has not been detected before. The ULVZs are located to the south of Hawaii and are part of the previously detected complex low velocity structure at the base of the mantle in our study region. The waveforms also reveal that, to first order, the base of the mantle in our study region is a broad and thin region of modestly low velocities. Measurements of Sdiffshear wave splitting reveal evidence for lowermost mantle anisotropy that is approximately co‐located with ULVZ material. Our measurements of co‐located anisotropy and ULVZ material suggest plausible geodynamic scenarios for flow in the deep mantle near the Pacific LLVP edge.

     
    more » « less
  2. Qualitative and quantitative analysis of seismic waveforms sensitive to the core–mantle boundary (CMB) region reveal the presence of ultralow-velocity zones (ULVZs) that have a strong decrease in compressional (P) and shear (S) wave velocity, and an increase in density within thin structures. However, understanding their physical origin and relation to the other large-scale structures in the lowermost mantle are limited due to an incomplete mapping of ULVZs at the CMB. The SKS and SPdKS seismic waveforms is routinely used to infer ULVZ presence, but has thus far only been used in a limited epicentral distance range. As the SKS/SPdKS wavefield interacts with a ULVZ it generates additional seismic arrivals, thus increasing the complexity of the recorded wavefield. Here, we explore utilization of the multi-scale sample entropy method to search for ULVZ structures. We investigate the feasibility of this approach through analysis of synthetic seismograms computed for PREM, 1-, 2.5-, and 3-D ULVZs as well as heterogeneous structures with a strong increase in velocity in the lowermost mantle in 1- and 2.5-D. We find that the sample entropy technique may be useful across a wide range of epicentral distances from 100° to 130°. Such an analysis, when applied to real waveforms, could provide coverage of roughly 85% by surface area of the CMB. 
    more » « less
  3. Abstract

    Ultralow‐velocity zones (ULVZs) have been studied using a variety of seismic phases; however, their physical origin is still poorly understood. Short period ScP waveforms are extensively used to infer ULVZ properties because they may be sensitive to all ULVZ elastic moduli and thickness. However, ScP waveforms are additionally complicated by the effects of path attenuation, coherent noise, and source complexity. To address these complications, we developed a hierarchical Bayesian inversion method that allows us to invert ScP waveforms from multiple events simultaneously and accounts for path attenuation and correlated noise. The inversion method is tested with synthetic predictions which show that the inclusion of attenuation is imperative to recover ULVZ parameters accurately and that the ULVZ thickness and S‐wave velocity decrease are most reliably recovered. Utilizing multiple events simultaneously reduces the effects of coherent noise and source time function complexity, which in turn allows for the inclusion of more data to be used in the analyses. We next applied the method to ScP data recorded in Australia for 291 events that sample the core‐mantle boundary beneath the Coral Sea. Our results indicate, on average, ∼12‐km thick ULVZ with ∼14% reduction in S‐wave velocity across the region, but there is a greater variability in ULVZ properties in the south than that in the north of the sampled region. P‐wave velocity reductions and density perturbations are mostly below 10%. These ScP data show more than one ScP post‐cursor in some areas which may indicate complex 3‐D ULVZ structures.

     
    more » « less
  4. Abstract

    Much of our knowledge on deep Earth structure is based on detailed analyses of seismic waveforms that often have small amplitude arrivals on seismograms; therefore, stacking is essential to obtain reliable signals above the noise level. We present a new iterative stacking scheme that incorporates Historical Interstation Pattern Referencing (HIPR) to improve data quality assessment. HIPR involves comparing travel‐time and data quality measurements between every station for every recorded event to establish historical patterns, which are then compared to individual measurements. Weights are determined based on the individual interstation measurement differences and their similarity to historical averages, and these weights are then used in our stacking algorithm. This approach not only refines the stacks made from high‐quality data but also allows some lower‐quality events that may have been dismissed with more traditional stacking approaches to contribute to our study. Our HIPR‐based stacking routine is illustrated through an application to core‐reflected PcP phases recorded by the Transantarctic Mountains Northern Network to investigate ultra‐low velocity zones (ULVZs). We focus on ULVZ structure to the east of New Zealand because this region is well‐sampled by our data set and also coincides with the boundary of the Pacific Large Low Shear Velocity Province (LLSVP), thereby allowing us to further assess possible ULVZ‐LLSVP relationships. The HIPR‐refined stacks display strong ULVZ evidence, and associated synthetic modeling suggests that the ULVZs in this region are likely associated with compositionally distinct material that has perhaps been swept by mantle convection currents to accumulate along the LLSVP boundary.

     
    more » « less
  5. Ultralow-velocity zones (ULVZs) at the core–mantle boundary (CMB) represent some of the most preternatural features in Earth’s mantle. These zones most likely contain partial melt, extremely high iron content ferropericlase, or combinations of both. We analyzed a new collection of 58,155 carefully processed and quality-controlled broadband recordings of the seismic phase SPdKS in the epicentral distance range from 106° to 115°. These data sample 56.9% of the CMB by surface area. From these recordings we searched for the most anomalous seismic waveforms that are indicative of ULVZ presence. We used a Bayesian approach to identify the regions of the CMB that have the highest probability of containing ULVZs, thereby identifying sixteen regions of interest. Of these regions, we corroborate well-known ULVZ existence beneath the South China Sea, southwest Pacific, the Samoa hotspot, the southwestern US/northern Mexico, and Iceland. We find good evidence for new ULVZs beneath North Africa, East Asia, and north of Papua New Guinea. We provide further evidence for ULVZs in regions where some evidence has been hinted at before beneath the Philippine Sea, the Pacific Northwest, and the Amazon Basin. Additional evidence is shown for potential ULVZs at the base of the Caroline, San Felix and Galapagos hotspots. 
    more » « less