skip to main content

Title: Dense Molecular Clouds in the Crab Supernova Remnant

Molecular emission was imaged with ALMA from numerous components near and within bright H2-emitting knots and absorbing dust globules in the Crab Nebula. These observations provide a critical test of how energetic photons and particles produced in a young supernova remnant interact with gas, cleanly differentiating between competing models. The four fields targeted show contrasting properties but within them, seventeen distinct molecular clouds are identified with CO emission; a few also show emission from HCO+, SiO, and/or SO. These observations are compared with Cloudy models of these knots. It has been suggested that the Crab filaments present an exotic environment in which H2emission comes from a mostly neutral zone probably heated by cosmic rays produced in the supernova surrounding a cool core of molecular gas. Our model is consistent with the observed COJ= 3 − 2 line strength. These molecular line emitting knots in the Crab Nebula present a novel phase of the ISM representative of many important astrophysical environments.

; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
The Astrophysical Journal
Page Range or eLocation-ID:
Article No. 59
DOI PREFIX: 10.3847
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Here, we present our current updates to the gas-phase chemical reaction rates and molecular lines in the spectral synthesis codecloudy, and its implications in spectroscopic modeling of various astrophysical environments. We include energy levels, and radiative and collisional rates for HF, CF+, HC3N, ArH+, HCl, HCN, CN, CH, and CH2. Simultaneously, we expand our molecular network involving these molecules. For this purpose, we have added 561 new reactions and have updated the existing 165 molecular reaction rates involving these molecules. As a result,cloudynow predicts all the lines arising from these nine molecules. In addition, we also update H2–H2collisional data up to rotational levelsJ= 31 forv= 0. We demonstrate spectroscopic simulations of these molecules for a few astrophysical environments. Our existing model for globules in the Crab Nebula successfully predicts the observed column density of ArH+. Our model predicts a detectable amount of HeH+, OH+, and CH+for the Crab Nebula. We also model the interstellar medium toward HD185418, W31C, and NGC 253, and our predictions match with most of the observed column densities within the observed error bars. Very often molecular lines trace various physical conditions. Hence, this update will be very supportive for spectroscopic modeling of various astrophysical environments,more »particularly involving submillimeter and mid-infrared observations using the Atacama Large Millimeter/submillimeter Array and the James Webb Space Telescope, respectively.

    « less
  2. Abstract

    The abundance of cold molecular gas plays a crucial role in models of galaxy evolution. While deep spectroscopic surveys of CO emission lines have been a primary tool for measuring this abundance, the difficulty of these observations has motivated alternative approaches to studying molecular gas content. One technique, line intensity mapping, seeks to constrain the average molecular gas properties of large samples of individually undetectable galaxies through the CO brightness power spectrum. Here we present constraints on the cross-power spectrum between CO intensity maps and optical galaxy catalogs. This cross-measurement allows us to check for systematic problems in CO intensity mapping data, and validate the data analysis used for the auto-power spectrum measurement of the CO Power Spectrum Survey. We place a 2σupper limit on the band-averaged CO-galaxy cross-power ofP×< 540μK h−3Mpc3. Our measurement favors a nonzero 〈TCO〉 at around 90% confidence and gives an upper limit on the mean molecular gas density atz∼ 2.6 of 7.7 × 108MMpc−3. We forecast the expected cross-power spectrum by applying a number of literature prescriptions for the CO luminosity–halo mass relation to a suite of mock light cones. Under the most optimistic forecasts, the cross-spectrum could be detected with only moderate extensionsmore »of the data used here, while more conservative models could be detected with a factor of 10 increase in sensitivity. Ongoing CO intensity mapping experiments will target fields allowing for extensive cross-correlation analysis and should reach the sensitivity required to detect the cross-spectrum signal.

    « less
  3. Abstract

    We have complemented existing observations of Hiabsorption with new observations of HCO+, C2H, HCN, and HNC absorption from the Atacama Large Millimeter/submillimeter Array and the Northern Extended Millimeter Array in the directions of 20 background radio continuum sources with 4° ≤ ∣b∣ ≤ 81° to constrain the atomic gas conditions that are suitable for the formation of diffuse molecular gas. We find that these molecular species form along sightlines whereAV≳ 0.25, consistent with the threshold for the Hi-to-H2transition at solar metallicity. Moreover, we find that molecular gas is associated only with structures that have an Hioptical depth >0.1, a spin temperature <80 K, and a turbulent Mach number ≳ 2. We also identify a broad, faint component to the HCO+absorption in a majority of sightlines. Compared to the velocities where strong, narrow HCO+absorption is observed, the Hiat these velocities has a lower cold neutral medium fraction and negligible CO emission. The relative column densities and linewidths of the different molecular species observed here are similar to those observed in previous experiments over a range of Galactic latitudes, suggesting that gas in the solar neighborhood and gas in the Galactic plane are chemically similar. For a select sample of previouslymore »observed sightlines, we show that the absorption line profiles of HCO+, HCN, HNC, and C2H are stable over periods of ∼3 yr and ∼25 yr, likely indicating that molecular gas structures in these directions are at least ≳100 au in size.

    « less
  4. Abstract

    We use ALMA observations of CO(2–1) in 13 massive (M*≳ 1011M) poststarburst galaxies atz∼ 0.6 to constrain the molecular gas content in galaxies shortly after they quench their major star-forming episode. The poststarburst galaxies in this study are selected from the Sloan Digital Sky Survey spectroscopic samples (Data Release 14) based on their spectral shapes, as part of the Studying QUenching at Intermediate-z Galaxies: Gas, anguLarmomentum, and Evolution (SQuIGGLE) program. Early results showed that two poststarburst galaxies host large H2reservoirs despite their low inferred star formation rates (SFRs). Here we expand this analysis to a larger statistical sample of 13 galaxies. Six of the primary targets (45%) are detected, withMH2109M. Given their high stellar masses, this mass limit corresponds to an average gas fraction offH2MH2/M*7%or ∼14% using lower stellar masses estimates derived from analytic, exponentially declining star formation histories. The gas fraction correlates with theDn4000 spectral index, suggesting that the cold gas reservoirs decrease with time since burst, as found in local K+A galaxies. Star formation histories derived from flexible stellar population synthesis modeling support thismore »empirical finding: galaxies that quenched ≲150 Myr prior to observation host detectable CO(2–1) emission, while older poststarburst galaxies are undetected. The large H2reservoirs and low SFRs in the sample imply that the quenching of star formation precedes the disappearance of the cold gas reservoirs. However, within the following 100–200 Myr, theSQuIGGLEgalaxies require the additional and efficient heating or removal of cold gas to bring their low SFRs in line with standard H2scaling relations.

    « less
  5. Abstract

    Observations of12COJ= 1 – 0 and HCNJ= 1 – 0 emission from NGC 5194 (M51) made with the 50 m Large Millimeter Telescope and the SEQUOIA focal plane array are presented. Using the HCN-to-CO ratio, we examine the dense gas mass fraction over a range of environmental conditions within the galaxy. Within the disk, the dense gas mass fraction varies along the spiral arms but the average value over all spiral arms is comparable to the mean value of interarm regions. We suggest that the near-constant dense gas mass fraction throughout the disk arises from a population of density-stratified, self-gravitating molecular clouds and the required density threshold to detect each spectral line. The measured dense gas fraction significantly increases in the central bulge in response to the effective pressure,Pe, from the weight of the stellar and gas components. This pressure modifies the dynamical state of the molecular cloud population and, possibly, the HCN-emitting regions in the central bulge from self-gravitating to diffuse configurations in whichPeis greater than the gravitational energy density of individual clouds. Diffuse molecular clouds comprise a significant fraction of the molecular gas mass in the central bulge, which may account for the measured sublinear relationships betweenmore »the surface densities of the star formation rate and molecular and dense gas.

    « less